Select Page
Trace metal analysis with solid-state electrodes – Part 5

Trace metal analysis with solid-state electrodes – Part 5

In the last part of our series of articles about trace metal analysis using solid-state electrodes, we will have a look at the glassy carbon rotating disc electrode (GC RDE) and its application possibilities.

Did you read the other parts in this series? Find them here!

The Glassy Carbon Rotating Disc Electrode

A rotating disc electrode (RDE) consists of two parts: the electrode tip which is made available in different materials, and a driving axle. The electrode tip is simply screwed onto the axle (Figure 1) to assemble the complete working electrode.

Figure 1. The two parts which make up the RDE. Left: driving axle for RDE. Right: glassy carbon electrode tip, with shaft made of glass.

Glassy carbon (GC) has a long history as solid electrode material for trace metal analysis. In general, GC is carbon with an amorphous structure which is similar to glass or ceramics, but different from graphite or diamond which both have a crystalline structure.

Aside from properties including a high temperature stability and a hardness similar to quartz, glassy carbon is very chemically inert and has a low electrical resistance, making it a versatile electrode material.

In the Metrohm GC electrode tip (Figure 1), the glassy carbon rod is fused within a glass shaft—another inert material. This design creates an electrode tip that is inert against most chemicals and solvents and guarantees measurements with excellent reproducibility due to the seamless intersection between the electrode material and glass shaft.

Modification with a metal film

For trace metal applications, the GC electrode is modified with a metal film, usually mercury or bismuth. The film is plated ex-situ from an acid plating solution which contains about 20 mg/L Hg2+ or Bi3+. Such a solution can easily be prepared from commercially available metal standard solutions and can be used for the plating of several films.

Once the film is deposited on the glassy carbon electrode, multiple determinations can be carried out with the same film. When the performance deteriorates, the exhausted film is simply wiped off and a fresh film is plated. Since only the renewable film is affected by aging processes, the GC electrode itself can be used for a very long time.

Applications using glassy carbon electrodes exhibit excellent reproducibility and stability in combination with very low detection limits.

Figure 2. Glassy carbon rotating disc electrode in a 884 Professional VA instrument from Metrohm.


Cadmium and lead determinations

The risk of cadmium and lead poisoning from drinking water and the significance of the determination of these two elements has already been discussed in previous posts in this series. To monitor the guideline values of 3 µg/L for cadmium and 10 µg/L for lead, recommended by the WHO (World Health Organization), a detection limit of β(Cd) = 0.3 µg/L and β(Pb) = 1 µg/L would be sufficient.

With the glassy carbon electrode the determination is far more sensitive, featuring a ten-fold improvement on the limit of detection of β(Cd) = 0.02 µg/L and β(Pb) = 0.05 µg/L with a deposition time of 30 s. This limit can be lowered even more with an increased deposition time.

For this extremely sensitive determination, a mercury film is plated on the glassy carbon electrode. The determination of cadmium and lead is carried out by anodic stripping voltammetry (ASV).

To learn more about this application, please check our website.

Free Application Note download: AN-V-225 Cadmium and lead in drinking water – Simultaneous determination on a mercury film modified glassy carbon electrode.

The very low detection limit makes this application especially interesting when it is not only required to monitor limit values but to actually detect concentrations in the ppt (parts per trillion, ng/L) range, e.g. in environmental analysis such as for seawater research.

Nickel and cobalt measurements

Another application with very low detection limits using the GC electrode is the determination of nickel and cobalt. This electrode allows the detection of concentrations down to β(Ni) = 0.05 µg/L and β(Co) = 0.03 µg/L. For this application, the electrode is modified with a bismuth film. The determination of nickel and cobalt is carried out by adsorptive stripping voltammetry (AdSV) using the complexing agent DMG (dimethylglyoxime).

Figure 3. Determination of β(Ni) = 0.34 µg/L and β(Co) < LOD in tap water (30 s deposition time) using the GC RDE.

For decades, this method was successfully executed with the mercury drop electrode. The use of a bismuth film on a glassy carbon electrode offers a non-toxic alternative with a similar sensitivity as the established method. Besides the high sensitivity, this application also shows excellent repeatability.

20 consecutive determinations of β(Ni) = 0.5 µg/L and β(Co) = 0.5 µg/L, carried out on the same bismuth film, showed an average recovery of 105% for nickel, with a relative standard deviation (RSD) of 2.0%. The recovery for cobalt was 112% with a RSD of 3.3%. This makes this method a viable tool in environmental analysis when natural background concentrations, which are often in the ppt (ng/L) range, should be investigated.

For further details about this application, please refer to Application Note AN-V-224: Nickel and cobalt in drinking water – Simultaneous determination in low ng/L range on the GC RDE modified with a bismuth film.

Chromium(VI) monitoring

Legal limits for chromium are relatively high. For example, the guideline value of the World Health Organization (WHO) is 50 µg/L for drinking water. These values usually refer to the total chromium concentration, but there are significant differences in toxicity between Cr(III) and Cr(VI). Even miniscule doses of Cr(VI) are toxic as well as carcinogenic.

Since the beginning of this century, there have been ongoing discussions in the scientific community about whether an additional limit value only for Cr(VI) is required, and what this value should be.

Measuring techniques are needed which allow the determination of Cr(VI) in the ng/L range. Using the glassy carbon electrode modified with a mercury film it is possible to detect Cr(VI) concentrations down to 0.05 µg/L. Cr(VI) is determined by adsorptive stripping voltammetry (AdSV) with DTPA (diethylenetriaminepentaacetic acid) as complexing agent. The recovery of a concentration of β(Cr(VI)) = 0.1 µg/L is 111% with a relative standard deviation of 4.4% (triplicate determination).

If you are interested to learn more, download our free Application Note V-277: Chromium(VI) in drinking water – Ultra-sensitive determination on the mercury film modified glassy carbon electrode (DTPA method).

All the above-mentioned applications can be carried out manually with a 884 Professional VA system (Figure 4), but it is also possible to run small sample series with an automated setup.

Figure 4. 884 Professional VA with two 800 Dosinos for automatic addition of electrolyte and standard solution.


This was the last post in our five-part series on heavy metal analysis with solid state electrodes. If this or one of the previous posts sparked your interest in one of the applications, do not hesitate to contact your local Metrohm representative.

For a complete overview of the different applications that can be performed with the SSEs exhibited in this series, check out the table below. Click on each application note or bulletin for a free download! 

Overview: Applications with Metrohm SSEs
Element Electrode Application Document Lab Portable
Ag GC RDE Application Bulletin 207

As scTRACE Gold Application Note V-210
Application Note V-211

Bi scTRACE Gold Application Note V-218

Cd, Pb GC RDE (Hg film) Application Note V-225

Cd, Pb SPE (Hg film) Application Note V-231

Cd, Pb Bi drop Application Note V-221

Cr(VI) GC RDE (Hg film) Application Note V-227

Cr(VI) scTRACE Gold (Hg film) Application Note V-230

Cu scTRACE Gold Application Note V-213

Fe scTRACE Gold Application Note V-216

Fe Bi drop Application Note V-222

Hg scTRACE Gold Application Note V-212

Ni, Co scTRACE Gold (Bi film) Application Note V-217

Ni, Co GC RDE (Bi film) Application Note V-224

Ni, Co SPE (Bi film) Application Note V-232

Ni, Co Bi drop Application Note V-223

Pb scTRACE Gold (Ag film) Application Note V-214

Sb(III) scTRACE Gold Application Note V-229

Se(IV) scTRACE Gold Application Note V-233

Te(IV) scTRACE Gold Application Note V-234

Tl scTRACE Gold (Ag film) Application Note V-228

Zn scTRACE Gold Application Note V-215

Post written by Barbara ZumbrägelProduct Manager VA/CVS at Metrohm International Headquarters, Herisau, Switzerland.

Real World Raman: Mira DS in Action – Detecting drugs safely in the field

Real World Raman: Mira DS in Action – Detecting drugs safely in the field

Methamphetamine (meth, Figure 1) abuse is one of the top drug problems impacting the social, economic, and health welfare of many developed and developing countries. Short-term use of meth, a powerful stimulant, provides a euphoric sense of alertness and enhanced capability for work-related activities. Chronic use inevitably leads to addiction, antisocial and sometimes violent criminal behavior, and a pronounced decline in the overall health and well-being of the user.

The proliferation and use of meth across the US, Asia, and Europe is aided by underground «kitchen» laboratories, which are the primary source of clandestine meth production and distribution.

Figure 1. Methamphetamine crystals.

Meth can be easily synthesized from pseudoephedrine extracted from over-the-counter cold medications (Figure 2) and easily purchased commercial products enriched in required reagents.

Figure 2. Pseudoephedrine tablets.

A number of different procedures have been adopted for the clandestine synthesis of meth. However, the widespread one-pot «Shake and Bake» method is uniquely adapted for covert small-scale cooking operations due to the inherent simplicity of the chemical reaction and laboratory setup.

Increasingly, methamphetamine production has moved from large-scale laboratory operations to small-scale syntheses using one-pot methods. To address this challenge, police must identify the contents of potential reaction vessels and establish a pattern of production within a discrete geographical area in order to apprehend and convict methamphetamine producers.

The target in these cases can be a discarded glass jar or plastic drink bottle containing reaction residue (Figure 3).

Figure 3. Plastic waste that appears to be the remains of a clandestine meth laboratory.

Effective suppression of meth production requires rapid confirmation of meth, or its related precursors and byproducts. Ideally, such tests are performed at the scene of suspected primitive «cooking» facilities by drug enforcement officers and first responders. On-site detection must utilize instrumentation that is compact, cost-effective, fast, and incorporates user-friendly operation procedures. 

However, rapid and portable detection capabilities for front-line law enforcement officers are lacking. These include pH strips, direct observation of odors, lab-related trash and chemical containers, and notoriously unreliable colorimetric tests. The alternative is laboratory analysis, which is complicated due to costs, time, transport, and availability.

Handheld Raman is a relatively new method that streamlines field identification of potentially flammable and explosive residues in one-pot vessels (Figure 4). Sampling and identification occurs through plastic and glass surfaces, ensuring police safety by reducing exposure to potentially hazardous materials.

Figure 4. Metrohm Raman Mira DS identifying meth in the field through a glass jar.
Did you read our last blog about handheld Raman at Metrohm? If not, read it here!

In this article, the advantage of using handheld Raman to obtain forensic evidence linking a suspected «cook» site with meth production is demonstrated. Mira DS is Metrohm’s premier handheld Raman system designed to meet the needs of first responders (Figure 5). 

Figure 5. Metrohm Raman Mira DS and optional measurement attachments for the simple identification of illicit and hazardous materials.
Want to find out more about Mira DS? Visit our website!

Unlike trained analytical scientists, defense and security professionals need a solution that gives them instant results without complicated routines. With Smart Acquire, Mira DS is a point-and-shoot solution. Simply power up the instrument, touch the screen once to activate the laser and again to take a sample, then Mira DS automatically optimizes acquisition parameters, processes data, identifies the target through library matching, and delivers the results with relevant chemical warnings – all in less than a minute. When Mira DS is used with MiraCal M mobile software, these results can be shared instantly to alert others of potential danger.


Response Team Training with Mira DS

Simulated testing of a small-scale meth production facility was conducted in the US Midwest by the Security and Defense directorate of Metrohm USA to support Civil Support Team (CST) Training. During the Civil Support Skills CBRNE Course training, first responders are taught to recognize laboratories in which Chemical, Biological, Radiological, Nuclear or high-yield Explosive materials are being manufactured or manipulated.

Equipped with a detailed education in weapons of mass destruction and drug chemistry, attendees are required to recreate and evaluate realistic clandestine laboratories using innovative methods (Figure 6). Upon the successful completion of training, CST graduates possess unique capabilities, expertise, and an in-depth command of the technologies required for responding to CBRNE defense scenarios.

Figure 6. Images of CST test site for illicit chemical synthesis using Mira DS with Standoff Attachment for safe measurement.

During CST training, meth was synthesized using the one pot «Shake and Bake» method. This is the preferred route for making meth in low resource labs, despite relatively low product purity. The key ingredients for synthesis are easily sourced from hardware and drug stores. Preparatory procedures, the chemical reaction steps, and drug recovery can be performed in a few hours using emptied glass jars or plastic beverage bottles, tape, and tubing. Plastic is preferred to glass, as the risk of explosion during the course of the reaction is very high.

For more information about our Standoff Attachment, visit our website and watch the video below!

Testing for illicit substances is simple with Mira DS

Trainees used Mira DS (Figure 5), a handheld Raman device, to directly interrogate liquid waste in glass jars at a simulated cook site directly through the container material. Attachments for Mira DS snap on with a simple magnetic interface. Figure 7 shows the analysis of the actual one-pot meth reaction waste, seen as a bi-phasic liquid layer that remained following the removal of product. 

First, the Intelligent Universal Attachment (iUA) was used in its «bottle» setting to test each liquid waste layer directly through the glass. This attachment has three settings, including «surface» for direct contact with a material, and «bag» and «bottle» for sampling through thin and thick barriers.

Figure 7. Mira DS with Intelligent Universal Attachment in use at CST training, testing bi-phasic one-pot meth reaction waste. Left: measuring the bottom (yellow) layer – identified as calcium nitrate. Right: measuring the top (orange) layer – identified as acetone.

Next, the Contact Ball Probe Attachment (CBP) was used to confirm the identity of the waste. CBP is a chemically resistant quick dip solution for direct sampling, and can be used with both liquids and powdered solids.

In short, Mira DS was outfitted with an attachment, powered up, the laser activated, and testing initiated using the touch screen. On-board Smart Acquire algorithms automatically optimize acquisition parameters (Laser Power, Integration Time, Averaging, etc.), process spectral data, perform library searches and matching for the user, and report results in under a minute with color-coded chemical warnings and alerts.

Results of the CST training

The library spectral stack in Figure 8 includes the product, methamphetamine, and reagents used in its synthesis during the training course. Actual data acquired during both training and real-world testing scenarios can be expected to be «messy» due to substandard reaction conditions and resulting complex chemical mixtures. Mira DS addresses this challenge by automatically correlating acquired spectra with library spectra of illicit substances, performing Mixture Matching routines, and rapidly reporting the top matches.

Figure 8. Raman Illicit Library reference spectra for the major reagents used in one-pot meth production (click to enlarge).

To learn more about identifying narcotics in complex samples using handheld Raman, download our free white paper!

To summarize, Mira DS is capable of rapidly identifying key components of a popular method for clandestine meth synthesis. Two notable aspects of these results:

  • additional peaks in experimental spectra correlate with unidentified reaction byproducts, but
  • the excellent spectral resolution here, reinforced by very high correlation (HQI) scores, is a reflection of the suitability of handheld Raman as an on-site analytical tool.

In real world situations, first responders must maintain their training and stay current regarding the diverse materials and methods they are likely to encounter to ensure that Raman library entries are up to date.


In most situations, the product has already been removed from the cook site. Therefore one-pot meth site inspection does not realistically result in a methamphetamine identification, but the discarded waste chemicals can provide forensic evidence of meth production. These results illustrate the unique capabilities of handheld Raman in the hands of law enforcement in real world scenarios. This technique is powerful in several ways:

  • Data can be collected on-site and shared electronically for increased technical support
  • No-contact sampling of container contents reduces danger during investigation
  • Results are given in a few seconds
  • Mixture Matching provides results for real world scenarios
  • Results provide forensic evidence to link a suspected cook site with methamphetamine production

Mira DS is a promising and robust analytical tool for obtaining corroborative forensic evidence and successfully prosecuting drug crime.

Download our free white paper

Safety in Any Situation – Addressing the needs of first responders

Post written by Dr. Mark Harpster (Research Scientist, University of Wyoming/Applications Chemist, Metrohm Raman, Laramie, Wyoming, USA), Dr. Melissa J. Gelwicks (Applications Chemist, Metrohm Raman, Laramie, Wyoming, USA), and Dr. Bryan H. Ray (WMD Clandestine Production Laboratory Site Safety Officer Course/Civil Support Skills CBRNE Course Instructor, Metrohm USA, Tampa, Florida).

History of Metrohm IC – Part 4

History of Metrohm IC – Part 4

In the fourth installment in our series about the history of ion chromatography development at Metrohm over the years, we now focus on some of our combined analysis techniquesThese are unique combinations of Metrohm instruments from different product groups which broaden application possibilities beyond what IC could accomplish alone. Here we will discuss the TitrIC and VoltIC systems.

Did you miss the other parts in this series? Find them here!

TitrIC: combining titration, direct measurement, and IC in one

The combination of titration, pH, and conductivity measurement, as well as ion chromatography in a single analytical system was introduced in the late 1990s. This TitrIC system consisted of a Titrino for the determination of the p- and m-value (alkalinity), pH and conductivity meters, as well as a modular IC from the 732 IC Detector generation.

Figure 1. The first-generation TitrIC system from the late 1990s, including an autosampler for higher sample throughput.

Depending on the analysis requirements, either a second Titrino (for the Ca/Mg water hardness determination) or a second IC channel (for alkali and alkaline earth metal cations as well as ammonium) was selected. The latter enabled an automatic determination of the ion balance for the first time.

The central unit is the autosampler, which directs the water sample to the titration/metering section and to the ion chromatographs. The respective titration software controls the titrators and pH/temperature meters, calculates the results, and transfers them to the IC software (at the time, IC Net). The IC software controls the ion chromatograph and creates the final report. The user only communicates with the master software, making comprehensive analysis a simple task. This combination was available in all Metrohm IC generations (Figures 1 and 2). The most current setup (TitrIC Flex I and II) combines the 930 Compact IC Flex instruments with OMNIS titration.

Figure 2. TitrIC has evolved: TitrIC 7 system with 850 Professional IC series and Robotic Titrosampler has now become the TitrIC Flex (I and II), based on OMNIS titration and the 930 Compact IC Flex series.

Do you want to learn more about the combination of titration, direct measurement, and IC analysis and what it can do for your laboratory efficiency? Take a look at our previous blog post, download a free application note, or check out our brochure full of important information.

VoltIC – Voltammetry and IC

Just as with titration, it also is possible to combine IC and voltammetry in order to further expand application capabilities for enhanced trace measurement of analytes in water. VoltIC Professional integrates these techniques in a single, fully automatic system that is controlled via a common software, providing users with the strengths of both IC and voltammetry. Anions, major cations as well as trace cations may be detected in one determination. 

Back in 2012, the original VoltIC pro system was launched to bridge the gap between these two techniques and to offer a unique solution to the market. In 2013, the new line of 940 Professional IC Vario instruments came along. A few years later in 2016, the 884 Professional VA analyzer was brought to the market, and thus VoltIC on the next level: the current VoltIC Professional system (Figure 3).

Figure 3. VoltIC Professional system developed in 2016 for the enhanced analysis of trace impurities in water samples.

Is VoltIC the right choice for your laboratory? We offer free application notes for download, or check out the Metrohm website and download our brochure!

Next topic:

In Part 5 of our series, we will move on the use of ion chromatography for continuous air monitoring with the MARGA from Metrohm Process Analytics!

Don’t miss out – subscribe to our blog for weekly updates from the experts!

Download our free monograph:

Practical Ion Chromatography – An Introduction

Post written by Dr. Markus Läubli, Manager Marketing Support IC at Metrohm International Headquarters, Herisau, Switzerland.

Frequently asked questions in near-infrared spectroscopy analysis – Part 2

Frequently asked questions in near-infrared spectroscopy analysis – Part 2

Whether you are new to the technique, a seasoned veteran, or merely just curious about near-infrared spectroscopy (NIRS), Metrohm is here to help you to learn all about how to perform the best analysis possible with your instruments.

In this series, we will cover several frequently asked questions regarding both our laboratory NIRS instruments as well as our line of Process Analysis NIRS products.

Did you miss Part 1 in this series? Find it here!

1. What are typical detection limits for liquid samples and for solid samples?

The detection limit varies depending on the substance analyzed, the complexity of the sample matrix, and the sensitivity of both the reference and NIR technology used. NIR spectroscopy systems using dispersive technology are the most sensitive. Using such a system to analyze a simple sample in which the parameter of interest is a strong absorber will allow low detection limits.

For example, water in solvents can be detected down to about 10 mg/L in both offline and online/inline measurements. For more complex matrices (e.g., solids and slurries), detection limits are about 1000 mg/L (0.1%).

For more information about the differences between solid and liquid samples for NIRS analysis, as well as the different methods best suited for such matrices, read our blog post «Benefits of NIR spectroscopy: Part 1» here!

2. What accuracy can I achieve with NIR spectroscopy?

The accuracy of a near-infrared spectroscopic method depends on the accuracy of the reference/primary method. A highly accurate primary method will result in the development of a highly accurate NIR method, while a less accurate primary method lowers the accuracy of the related NIR method. This is because the NIR data and primary data are correlated in the prediction model. A good prediction model will have approximately 1.1x the accuracy of the primary method over the prediction range.

The development of prediction models has been described in detail in our previous blog article: «Benefits of NIR spectroscopy: Part 3».

3. How are instruments calibrated and how often do I need to recalibrate an instrument?

Instruments are calibrated using certified NIST standards. For dispersive systems measuring in reflection mode, NIST SRM 1920 standards are used to calibrate the wavelength / wavenumber axis. Certified reflection standards with a defined reflectance made of ceramic can be used to calibrate the absorbance axis.

In transmission mode, typically NIST SRM 2065 or 2035 are used for the wavelength / wavenumber calibration, and air for the absorbance axis.

A calibration should be performed after each hardware modification (e.g., lamp exchange) and annually as part of a service interval. Ideally, the spectroscopy software guides user through the complete calibration processes.

Find the calibration tools for your Metrohm NIRS instruments here!

Metrohm NIRS reflection standard, set of 2.

4. How do I validate my instrument and how frequently should validation be done?

The Metrohm NIRS DS2500 Solid Analyzer.

NIR spectroscopy software offers different tests to validate the performance of the instrument. The most common one is a basic performance test, which tests some crucial hardware parts as well as the wavelength/wavenumber calibration and the signal to noise (S/N) of the system.

For the regulated environment, further tests according to the USP <856> guidelines are typically implemented, including photometric linearity and noise at high and low light fluxes. Instrument performance tests should be performed on a regular basis, with the frequency depending on risk assessment.

5. What sample types or parameters are not suitable for analysis with NIR spectroscopy?

Samples containing a high amount of carbon black cannot be analyzed by NIR spectroscopy because carbon black absorbs almost all NIR light.

Further, most inorganic substances have no absorbance bands in the NIR spectral region and are therefore not suitable for NIR analysis.

Find out more about the molecules and functional groups which are active in the NIR region of the electromagnetic spectrum in our previous blog post: «Benefits of NIR spectroscopy: Part 2».

Carbon black is not a suitable sample to be measured by NIR technology.

Are you looking for more spectroscopy applications? Check out the Metrohm Application Finder to download free applications across a variety of industries!

6. My industrial process is full of harsh chemicals, so manual sampling is not desirable. Is it possible to perform inline NIR analysis in hazardous areas?

Yes, and we have the right solutions for you. Metrohm not only manufactures instruments for laboratory analysis, but we also cater to the industrial process world! Metrohm Process Analytics offers two versions of process NIRS systems: the NIRS Analyzer Pro and the NIRS XDS Process Analyzer, the latter being the ideal solution for hazardous environments.

Metrohm Process Analytics offers two lines of near-infrared spectroscopic process analyzers: the NIRS Analyzer PRO and the NIRS XDS Process Analyzer.

NIRS is a robust and extremely versatile method, which enables simultaneous, «real-time» monitoring of diverse process parameters with a single measurement. The use of fiber-optics in NIRS means that the process analyzer and measuring point can be spatially separated – even by hundreds of meters if required. In fact, remote monitoring can be achieved at large distances without significant impact to S/N ratios. This is a huge advantage in environments with challenging explosion protection requirements. Fiber-optic probes and flow cells can be placed in very harmful working environments, while the spectrometer and analysis PC remain safe and secure in a shelter. When a shelter is not available, the NIRS XDS Process Analyzer can be directly placed in the hazardous area (ATEX Zone 2 or Class1Div2).

Obtain «real-time» results of your process without the need to take samples, reduce the risks of handling chemicals, and increase your profitability. Download our free brochure here for more information about safe operation of NIRS process analyzers in hazardous areas!

7. How is the maintenance of a NIRS process analyzer performed?

Maintenance is easy, fast, and not necessary to perform very often. NIRS is a reagentless analytical technique, so the only consumable to be replaced is the lamp, which needs replacement once per year.

Compared to other techniques like chromatography  (e.g., GC, IC) or titration, and also because NIR spectroscopic analysis does not degrade samples, there is no chemical waste which is produced. Additionally, thanks to our all-in-one software, automatic performance tests are performed regularly to guarantee that the analyzer is operating according to process specifications. The instrument can be left in the process without any further operator involvement. 

Metrohm Process Analytics NIRS process analyzers are maintenance-free systems that have been designed to guarantee high uptimes and low operational costs.

Are you searching for more process NIRS applications? Check out the Metrohm Application Finder to download them for free!

Want to learn more about NIR spectroscopy and potential applications? Have a look at our free and comprehensive application booklet about NIR spectroscopy.

Download our Monograph

A guide to near-infrared spectroscopic analysis of industrial manufacturing processes

Post written by Dr. Nicolas Rühl (Product Manager Spectroscopy at Metrohm International Headquarters, Herisau, Switzerland) and Dr. Alexandre Olive (Product Manager Process Spectroscopy at Metrohm Applikon, Schiedam, The Netherlands).

Thermometric titration – the missing piece of the puzzle

Thermometric titration – the missing piece of the puzzle

Titration is a well-established analysis technique taught to each and every chemistry student. Titration is carried out in nearly every analytical laboratory either as manual titration, photometric titration, or potentiometric titration. In this blog entry, I would like to present an additional kind of titration you may  not have heard of before – thermometric titration – which can be considered the missing piece of the titration puzzle.

Here, I plan to cover the following topics:
  1. What is thermometric titration?
  2. Why consider thermometric titration?
  3. Practical application examples

What is thermometric titration?

At first glance, thermometric titration (TET) looks like a normal titration and you won’t see much (or any) difference from a short distance. The differences compared to potentiometric titration are in the details.

TET is based on the principle of enthalpy change (ΔH). Each chemical reaction is associated with a change in enthalpy which in turn causes a temperature change. During a titration, analyte and titrant react either exothermically (increase in temperature) or endothermically (decrease in temperature).

During a thermometric titration, the titrant is added at a constant rate and the change in temperature caused by the reaction between analyte and titrant is measured. By plotting the temperature versus the added titrant volume, the endpoint can be determined by a break within the titration curve. Figure 1 shows idealized thermometric titration curves for both exothermic and endothermic situations.

Figure 1. Illustration of exothermic and endothermic titration curves showing clear endpoints where the temperature of the solution changes abruptly.

What happens during a thermometric titration?

During an exothermic titration reaction, the temperature increases with the titrant addition as long as analyte is still present. When all analyte is consumed, the temperature decreases again as the solution equilibrates with the atmospheric temperature and/or due to the dilution of the solution with titrant (Figure 1, left graph). This temperature decrease results in an exothermic endpoint.

On the contrary, for an endothermic titration reaction, the temperature decreases with the titrant addition as long as analyte is still available. When all analyte is consumed, the temperature stabilizes or increases again as the solution equilibrates with the atmospheric temperature and/or due to the dilution of the solution with titrant (Figure 1, right graph). This temperature decrease results in an endothermic endpoint.

Knowing the absolute temperature, isolating the titration vessel, or thermostating the titration vessel is thus not required for the titration.

Figure 2. Metrohm’s maintenance-free Thermoprobe used for the reliable indication of thermometric endpoints.

In order to measure the small temperature changes during the titration, a very fast responding thermistor with a high resolution is required. These sensors are capable of measuring temperature differences of less than 0.001 °C, and allow the collection of a measuring point every 0.3 seconds (Figure 2). 

Visit the Metrohm website to learn more about the fast, sensitive Thermoprobe products available even for aggressive sample solutions.

If you would like to learn more about the theory behind TET, then download our free comprehensive monograph on thermometric titration.

Why consider thermometric titration?

Potentiometric and photometric titration are already well established as instrumental titration techniques, so why should one consider thermometric titration instead?


TET has the same advantages as any instrumental titration technique:
  • Inexpensive analyses: Titration instruments are inexpensive to purchase and do not have high running and maintenance costs compared to other instruments for elemental analysis (e.g., HPLC or ICP-MS).
  • Absolute method: Titration is an absolute method, meaning it is not necessary to frequently calibrate the system.
  • Versatile use: Titration is a universal method, which can be used to determine many different analytes in various industries.
  • Easy to automate: Titration can be easily automated, increasing reproducibility and efficiency in your lab.
In comparison to classical instrumental titration, thermometric titration has several additional advantages:
  • Fast titrations: Due to the constant titrant addition, thermometric titrations are very fast. Typically, a thermometric titration takes 2–3 minutes.
  • Single sensor: Regardless of the titration reaction (e.g., acid-base, redox, precipitation, …), the same sensor (Thermoprobe) can be used for all of them.
  • Maintenance-free sensor: Additionally, the Thermoprobe is maintenance free. It requires no calibration or electrolyte filling and can simply be stored dry.
  • Less solvent: Typically, thermometric titrations use 30 mL of solvent or even less. The small amount of solvent ensures that the dilution is minimized, and the enthalpy changes can be detected reliably. As a side benefit, less waste is produced.
  • Additional titrations possible: Because enthalpy change is universal for any chemical reaction, thermometric titration is not bound to finding a suitable color indicator or indication electrode. This allows the possibility of additional titrations which cannot be covered by other kinds of titration.
  • Easier sample preparation: As TET uses higher titrant concentrations it is possible to use larger sample sizes, reducing weighing and dilution errors. Tedious sample preparation steps such as filtration can be omitted as well.
Figure 3. The Metrohm 859 Titrotherm with 801 Stirrer and notebook with tiamo™ software.

Learn more about the 859 Titrotherm system for the most reliable TET determinations on the Metrohm website.

Practical application examples

In this section I would like to present you some practical examples where TET can be applied.

Acid number and base number

The acid number (AN) and base number (BN) are two key parameters in the petroleum industry. They are determined by a nonaqueous acid-base titration using KOH or HClO4, respectively, as titrant.

During such determinations, very weak acids (for AN analysis) and bases (for BN analysis) are titrated with only small enthalpy changes. Using a catalytic indicator, these weak acids and bases can also be determined by TET.

ASTM D8045 describes the analysis of the AN by thermometric titration. The benefits of carrying out this titration are:

  • Less solvent (30 mL instead of 60 or 120 mL), meaning less waste
  • Fast titration (1–3 minutes)
  • No conditioning of the sensor

If you wish to learn more about how well the results of the AN determination according to ASTM D8045 correlate with ASTM D664, download our free White Paper WP-012 as well as our brochure below.

For more detailed information about the titration itself, download the free Application Bulletin AB-427 (AN) and Application Bulletin AB-405 (BN) below.


Using conventional titration, the salt content in foodstuff is usually determined based solely on the chloride content. However, foods usually contain additional sources of sodium, e.g. monosodium glutamate (also known as «MSG»). With TET it becomes possible to titrate the sodium directly, and thus to inexpensively determine the true sodium content in foodstuff, as stipulated in several countries.

If you wish to learn more about the sodium determination, watch our Metrohm LabCast video: «Sodium determination in food: Fast and direct thanks to thermometric titration».

Fertilizer analysis

Fertilizers consists of various nutrients, including phosphorus, nitrogen, and potassium, which are important for plant growth. TET enables the analysis of these nutrients by employing classical gravimetric reactions as the basis for the titration (e.g., precipitation of sulfate with barium). This allows for a rapid determination, without needing to wait hours for a result, as with conventional procedures based on drying and weighing the precipitate.

Nutrients which can be analyzed by TET include:
  • Phosphate
  • Potassium
  • Ammoniacal nitrogen
  • Urea nitrogen
  • Sulfate

Want to learn more about the analysis of fertilizers with thermometric titration? Download our free White Paper WP-060 on this topic. For more detailed information regarding the different fertilizer applications, check out the Metrohm Application Finder, or find a curated selection here.

Metal-organic compounds

Metal-organic compounds, such as Grignard reagents or butyl lithium compounds, are used for synthetizing active pharmaceutical ingredients (APIs) or manufacturing polymers such as polybutadiene. With TET, the analysis of these sensitive species can be performed rapidly and reliably by titrating them under inert gas with 2-butanol.

If you wish to learn more about this topic, check out our news article and download the free corresponding Application Note AN-H-142.

These were just a few examples about the possibilities of thermometric titration, to demonstrate its versatile use. For a more detailed selection, have a look at our Application Finder.

To summarize:

  • TET is an alternative titration method based on enthalpy change
  • A fast and sensitive Thermoprobe is used to determine exothermic and endothermic endpoints
  • Thermometric titration is a fast analysis technique providing results in less than 3 minutes
  • Thermometric titration can be used for various analyses, including titrations which cannot be performed otherwise (e.g., sodium determination)

I hope this overview has given you a better idea about thermometric titration – the missing piece of the titration puzzle.

For more information

Download our free Monograph:

Practical thermometric titrimetry

Post written by Lucia Meier, Technical Editor at Metrohm International Headquarters, Herisau, Switzerland.