Theoretical plates and peak symmetry
The number of theoretical plates (TP) can be a useful tool to judge the column packing status. The higher the TP value, the better the packing of the column. For a meaningful judgement of the column packing bed, choose an analyte that does not elute too early in the chromatogram (these peaks can be affected by extra-column effects, in particular on 2 mm systems) and that is not affected by secondary interactions (i.e., avoid using nitrate). For cations, potassium is a good choice, while for anions, sulfate is a suitable choice.
Although the columns are packed at pressures higher than the normal operating pressure, the packing bed continues to further densify throughout the column lifetime with the continuous application of flowing mobile phase (eluent). While the packing bed of the stationary phase improves due to this effect, it may also lead to some dead volume at the entrance of the separation column. This dead volume can be responsible for peak broadening and reduced theoretical plates, particularly at the beginning of the chromatogram.
While this is a regular aging process of the column, it is possible to slow it down by taking good care of the column. Preventive actions include the slow initiation of the eluent flow rate and temperature at start-up as well as the proper and complete shutdown of the high-pressure pump before removing the column, as mechanical stress can be detrimental to the packing bed. Exchanging the guard column can often have a positive impact on the theoretical plates and peak shapes (see Figure 2).
Issues with the column packing bed often also become visible in the asymmetry factor values and the overall peak shapes. More pronounced fronting as well as peak broadening can be warning signs for channeling in the column or the guard column. Unfortunately, this kind of damage on the column is irreversible and requires an exchange of the separation column.
Before column replacement, it is important to check if the issues originated from the column or another connection in the IC system whenever peak broadening is observed in the chromatogram. Make sure that all capillaries in the high-pressure path have a diameter of ≤0.25 mm and that all capillaries have been installed and connected correctly without additional dead volume. Systems equipped with small inner diameter (2 mm, microbore) columns are more strongly affected by dead volume than those with 4 mm columns. This means that when using microbore columns, less dead volume is required for the peak broadening effect to become visible compared to when using 4 mm columns.