Select Page
Thermometric titration – the missing piece of the puzzle

Thermometric titration – the missing piece of the puzzle

Titration is a well-established analysis technique taught to each and every chemistry student. Titration is carried out in nearly every analytical laboratory either as manual titration, photometric titration, or potentiometric titration. In this blog entry, I would like to present an additional kind of titration you may  not have heard of before – thermometric titration – which can be considered the missing piece of the titration puzzle.

Here, I plan to cover the following topics:
  1. What is thermometric titration?
  2. Why consider thermometric titration?
  3. Practical application examples

What is thermometric titration?

At first glance, thermometric titration (TET) looks like a normal titration and you won’t see much (or any) difference from a short distance. The differences compared to potentiometric titration are in the details.

TET is based on the principal of enthalpy change (ΔH). Each chemical reaction is associated with a change in enthalpy which in turn causes a temperature change. During a titration, analyte and titrant react either exothermically (increase in temperature) or endothermically (decrease in temperature).

During a thermometric titration, the titrant is added at a constant rate and the change in temperature caused by the reaction between analyte and titrant is measured. By plotting the temperature versus the added titrant volume, the endpoint can be determined by a break within the titration curve. Figure 1 shows idealized thermometric titration curves for both exothermic and endothermic situations.

Figure 1. Illustration of exothermic and endothermic titration curves showing clear endpoints where the temperature of the solution changes abruptly.

What happens during a thermometric titration?

During an exothermic titration reaction, the temperature increases with the titrant addition as long as analyte is still present. When all analyte is consumed, the temperature decreases again as the solution equilibrates with the atmospheric temperature and/or due to the dilution of the solution with titrant (Figure 1, left graph). This temperature decrease results in an exothermic endpoint.

On the contrary, for an endothermic titration reaction, the temperature decreases with the titrant addition as long as analyte is still available. When all analyte is consumed, the temperature stabilizes or increases again as the solution equilibrates with the atmospheric temperature and/or due to the dilution of the solution with titrant (Figure 1, right graph). This temperature decrease results in an endothermic endpoint.

Knowing the absolute temperature, isolating the titration vessel, or thermostating the titration vessel is thus not required for the titration.

Figure 2. Metrohm’s maintenance-free Thermoprobe used for the reliable indication of thermometric endpoints.

In order to measure the small temperature changes during the titration, a very fast responding thermistor with a high resolution is required. These sensors are capable of measuring temperature differences of less than 0.001 °C, and allow the collection of a measuring point every 0.3 seconds (Figure 2). 

Visit the Metrohm website to learn more about the fast, sensitive Thermoprobe products available even for aggressive sample solutions.

If you would like to learn more about the theory behind TET, then download our free comprehensive monograph on thermometric titration.

Why consider thermometric titration?

Potentiometric and photometric titration are already well established as instrumental titration techniques, so why should one consider thermometric titration instead?

 

TET has the same advantages as any instrumental titration technique:
  • Inexpensive analyses: Titration instruments are inexpensive to purchase and do not have high running and maintenance costs compared to other instruments for elemental analysis (e.g., HPLC or ICP-MS).
  • Absolute method: Titration is an absolute method, meaning it is not necessary to frequently calibrate the system.
  • Versatile use: Titration is a universal method, which can be used to determine many different analytes in various industries.
  • Easy to automate: Titration can be easily automated, increasing reproducibility and efficiency in your lab.
In comparison to classical instrumental titration, thermometric titration has several additional advantages:
  • Fast titrations: Due to the constant titrant addition, thermometric titrations are very fast. Typically, a thermometric titration takes 2–3 minutes.
  • Single sensor: Regardless of the titration reaction (e.g., acid-base, redox, precipitation, …), the same sensor (Thermoprobe) can be used for all of them.
  • Maintenance-free sensor: Additionally, the Thermoprobe is maintenance free. It requires no calibration or electrolyte filling and can simply be stored dry.
  • Less solvent: Typically, thermometric titrations use 30 mL of solvent or even less. The small amount of solvent ensures that the dilution is minimized, and the enthalpy changes can be detected reliably. As a side benefit, less waste is produced.
  • Additional titrations possible: Because enthalpy change is universal for any chemical reaction, thermometric titration is not bound to finding a suitable color indicator or indication electrode. This allows the possibility of additional titrations which cannot be covered by other kinds of titration.
  • Easier sample preparation: As TET uses higher titrant concentrations it is possible to use larger sample sizes, reducing weighing and dilution errors. Tedious sample preparation steps such as filtration can be omitted as well.
Figure 3. The Metrohm 859 Titrotherm with 801 Stirrer and notebook with tiamo™ software.

Learn more about the 859 Titrotherm system for the most reliable TET determinations on the Metrohm website.

Practical application examples

In this section I would like to present you some practical examples where TET can be applied.

Acid number and base number

The acid number (AN) and base number (BN) are two key parameters in the petroleum industry. They are determined by a nonaqueous acid-base titration using KOH or HClO4, respectively, as titrant.

During such determinations, very weak acids (for AN analysis) and bases (for BN analysis) are titrated with only small enthalpy changes. Using a catalytic indicator, these weak acids and bases can also be determined by TET.

ASTM D8045 describes the analysis of the AN by thermometric titration. The benefits of carrying out this titration are:

  • Less solvent (30 mL instead of 60 or 120 mL), meaning less waste
  • Fast titration (1–3 minutes)
  • No conditioning of the sensor

If you wish to learn more about how well the results of the AN determination according to ASTM D8045 correlate with ASTM D664, download our free White Paper WP-012 as well as our brochure below.

For more detailed information about the titration itself, download the free Application Bulletin AB-427 (AN) and Application Bulletin AB-405 (BN) below.

Sodium

Using conventional titration, the salt content in foodstuff is usually determined based solely on the chloride content. However, foods usually contain additional sources of sodium, e.g. monosodium glutamate (also known as «MSG»). With TET it becomes possible to titrate the sodium directly, and thus to inexpensively determine the true sodium content in foodstuff, as stipulated in several countries.

If you wish to learn more about the sodium determination, watch our Metrohm LabCast video: «Sodium determination in food: Fast and direct thanks to thermometric titration».

Fertilizer analysis

Fertilizers consists of various nutrients, including phosphorus, nitrogen, and potassium, which are important for plant growth. TET enables the analysis of these nutrients by employing classical gravimetric reactions as the basis for the titration (e.g., precipitation of sulfate with barium). This allows for a rapid determination, without needing to wait hours for a result, as with conventional procedures based on drying and weighing the precipitate.

Nutrients which can be analyzed by TET include:
  • Phosphate
  • Potassium
  • Ammoniacal nitrogen
  • Urea nitrogen
  • Sulfate

Want to learn more about the analysis of fertilizers with thermometric titration? Download our free White Paper WP-060 on this topic. For more detailed information regarding the different fertilizer applications, check out the Metrohm Application Finder, or find a curated selection here.

Metal-organic compounds

Metal-organic compounds, such as Grignard reagents or butyl lithium compounds, are used for synthetizing active pharmaceutical ingredients (APIs) or manufacturing polymers such as polybutadiene. With TET, the analysis of these sensitive species can be performed rapidly and reliably by titrating them under inert gas with 2-butanol.

If you wish to learn more about this topic, check out our news article and download the free corresponding Application Note AN-H-142.

These were just a few examples about the possibilities of thermometric titration, to demonstrate its versatile use. For a more detailed selection, have a look at our Application Finder.

To summarize:

  • TET is an alternative titration method based on enthalpy change
  • A fast and sensitive Thermoprobe is used to determine exothermic and endothermic endpoints
  • Thermometric titration is a fast analysis technique providing results in less than 3 minutes
  • Thermometric titration can be used for various analyses, including titrations which cannot be performed otherwise (e.g., sodium determination)

I hope this overview has given you a better idea about thermometric titration – the missing piece of the titration puzzle.

For more information

Download our free Monograph:

Practical thermometric titrimetry

Post written by Lucia Meier, Technical Editor at Metrohm International Headquarters, Herisau, Switzerland.

Trace metal analysis with solid-state electrodes – Part 4

Trace metal analysis with solid-state electrodes – Part 4

In this series of articles featuring various solid state electrodes, we have introduced the new Bi drop electrode and the scTRACE Gold electrode and their potential in the determination of heavy metals in drinking water. In Part 4, we introduce the next type of sensors available for heavy metal analysis: the screen-printed electrode (SPE) together with two applications for the simultaneous determination of cadmium and lead as well as nickel and cobalt.

Catch up on the series «Trace metal analysis with solid-state electrodes» here:

Screen-printed electrodes (SPEs)

Screen printing microfabrication technology is well established for the manufacture of thick film electrochemical sensors. This technology enables the mass production of reproducible and mechanically robust solid electrodes. The possibility of mass production has great impact on the price and makes the SPEs inexpensive and convenient for the determination of heavy metals.

Printing technology allows production of a maintenance-free reference electrode, making the preparation of the analytical system for the analysis of heavy metals faster and more straightforward. Here, you do not need to refill the reference electrode or clean the sensor after a finished determination. The integration of three electrodes (working, reference, and auxiliary – see Figure 1) on a single platform, with the simultaneous miniaturization of their size and the corresponding device, both supports and facilitates transportation of the equipment to the sampling point and the determination of heavy metals on-site.

Figure 1. Screen-printed electrode (SPE) from Metrohm DropSens.

The simplest and the fastest way to modify the properties of these screen-printed electrodes for heavy metal detection is to deposit (in situ or ex situ) a metal film (either bismuth or mercury) electrochemically on the working electrode. This approach allows flexible use of single sensor type (e.g. carbon) SPEs for a wide range of applications.

Mercury film modified SPEs

The mercury film on the carbon working electrode consists of a very thin layer of mercury adsorbed onto the electrode surface. The mechanisms of accumulation and the stripping are the same as those which occur at a conventional mercury drop electrode.

Bismuth film modified SPEs

Because bismuth is not toxic, there are two environmental friendly methods for the preparation of the bismuth film: in situ plating and ex situ plating. With ex situ plating, a bismuth film is prepared in a separate solution before the first determination. Then the modified electrode is rinsed with ultrapure water and can be further used for the analysis.

Screen-printed electrodes can only be used for a limited number of measurements and have to be replaced at regular intervals. The lifetime and the frequency of replacement depend on the type of electrode and the application.

Figure 2. 946 Portable VA Analyzer (SPE version).

For further information about the 946 Portable VA Analyzer, visit the Metrohm website!

Currently, screen printed electrodes allow the on-site, simultaneous determination of cadmium and lead. Therefore, below I will present a method for the cadmium and lead determination using the ex situ modification of the Metrohm DropSens 11L carbon screen printed electrodes with a mercury film.

In addition to the cadmium and lead determination, a method using an ex situ bismuth film for nickel and cobalt will be introduced. Both measurements (cadmium and lead, as well as nickel and cobalt) can be carried out with the 946 Portable VA Analyzer (version for screen printed electrodes (SPE), see Figure 2) or with any Metrohm VA Stand using the electrode shaft (see Figure 3).

Figure 3. Electrode shaft for screen-printed electrodes (SPE).

With the electrode shaft, you can now use screen-printed electrodes in any Metrohm VA Stand. Whether you are performing voltammetric trace analysis or you want to explore new application fields with your own modified sensor, the electrode shaft allows simple use of SPEs.

To download our free informative flyer, click the button below!

This leaflet explains even more about the handling and troubleshooting of the electrode shaft for screen-printed electrodes.

Applications

Anodic stripping voltammetric determination of cadmium and lead

Cadmium and lead are toxic elements, and their concentration in drinking water has to be monitored. The provisional guideline values in the World Health Organization’s «Guidelines for Drinking-water Quality» are set to a maximum concentration of 3 µg/L for cadmium and 10 µg/L for lead. The Metrohm DropSens 11L carbon screen printed electrode modified with an ex situ mercury film allows the simultaneous determination of cadmium and lead in drinking water samples (Figure 4).

Figure 4. Example for determination of cadmium and lead in tap water spiked with β(Cd) = 2 µg/L and β(Pb) = 2 µg/L.

Using the 946 Portable VA Analyzer with a 90 s deposition time, a limit of detection (LOD) of 0.3 µg/L for both elements can be achieved. This is more than sufficient to monitor the provisional WHO guideline values.

For more information about this application, download our free application note:

The relative standard deviation for 5 measurements in a check standard solution with β(Cd) = 2 µg/L and β(Pb) = 2 µg/L is 14% and 12%, and the recovery rate is 88% and 82% for cadmium and lead, respectively.

Adsorptive stripping voltammetric determination of nickel and cobalt

Nickel and cobalt can be released either directly, or via the wastewater–river pathway, into drinking water systems. In the EU, the legislation specifies 20 µg/L as the limit value for the nickel concentration in drinking water.

The simultaneous and straightforward determination of nickel and cobalt is based on adsorptive stripping voltammetry (AdSV) using dimethylglyoxime (DMG) as a complexing agent. Prior to the first determination, the Metrohm DropSens 11L carbon SPE has to be modified with an ex situ bismuth film. The unique properties of the non-toxic Bi film combined with AdSV results in an excellent performance in terms of sensitivity. When using the 946 Portable VA Analyzer the limit of detection for 30 s deposition time is approximately 0.4 µg/L for nickel and 0.2 µg/L for cobalt, and can be lowered further by increasing the deposition time.

The disposable sensor does not need maintenance such as mechanical polishing or mechanical cleaning. This method is best suited for manual systems.

Figure 5. Example determination of nickel and cobalt in tap water with the modified Metrohm DropSens 11L carbon SPE.

The relative standard deviation for 3 subsequent measurements in a check standard solution (β(Ni) = 2 µg/L β(Co) = 2 µg/L) is 7% and 8% respectively, and the recovery rate is 100% for nickel and 94% for cobalt.

For more information about this application, download our free application note:

Key features of the screen-printed electrodes

  • Mechanically robust, inexpensive, maintenance-free, miniaturized solid electrodes
  • Electrode holder fits all Metrohm VA Stands
    • 884 Professional VA, 797 VA Computrace, 663 VA Stand
  • Solution-proof electrode holder
  • Fast and easy exchange of SPEs
  • Simultaneous determination of Ni and Co, as well as Cd and Pb
  • Limit of detection in low μg/L and even high ng/L range
  • Suitable for on-site diagnostics

What’s next?

In the next part of this series on solid state electrodes, we will have a look at an ultra-sensitive and robust sensor for heavy metal detection: the glassy carbon electrode with some of its associated applications.

Post written by Dr. Jakub TymoczkoApplication Specialist VA/CVS at Metrohm International Headquarters, Herisau, Switzerland.

Oven method for sample preparation in Karl Fischer titration

Oven method for sample preparation in Karl Fischer titration

Maybe you have experienced one of the following situations in the laboratory. You need to determine the water content of a sample using Karl Fischer titration and you realize one or more of these issues:

  • The sample does not dissolve in the KF reagent. No solubilizer helps, the sample is still not dissolving, and the results are far from reproducible.
  • The sample reacts with the KF reagent. The titration does not stop, and there is no endpoint detected.
  • The sample contaminates the titration cell and the electrode(s). Even if you replace the reagent after every measurement, the obtained results are out of specification.

There is a way to solve the above-mentioned problems. Trust me—it’s fantastic!!

The solution is the oven method or gas extraction technique.

What is Karl Fischer titration? Download our free Monograph to learn more from the experts.

What is the oven method?

The oven method is a sample preparation technique used in Karl Fischer titration to analyze samples…

For more help, take a look at our frequently asked questions in Karl Fischer titration under the section «Sample Handling» here on our website:

The principle is very simple.

The sample is weighed into a headspace vial and closed with a septum cap. When placed in an oven, the water evaporates and a carrier gas (usually air or nitrogen) dried with a molecular sieve transports the released water into the titration cell, where the determination of the water content takes place. The water is separated from the sample matrix, avoiding side reactions and contamination.

The temperature of the oven is chosen according to the temperature stability of the sample. This leads to the question to which temperature the sample should be heated. What is the optimal oven temperature?

Finding the optimal oven temperature

Using a suitable oven temperature to analyze a sample is crucial to obtain the correct results. The oven temperature should be as high as possible, within reason. This guarantees a fast and complete release of the water and subsequently, short titration times. However, you should avoid choosing a temperature that is too high. Decomposition of the sample usually leads to the formation of unwanted substances that can falsify the water content. Therefore, as a rule of thumb, I recommend choosing an oven temperature 20 °C below the decomposition temperature of the sample.

But what can you do if you have no idea at which temperature your sample should be analyzed? No worries! There are several ways to find the optimal oven temperature.

One possibility is to search in the literature. The more information on temperature stability of the sample you find, the better off you will be. If you are able to find a decomposition temperature, it will help immensely to define the optimal oven temperature. Maybe you are lucky and someone else has already analyzed the same sample; then you may also find a recommended oven temperature. A good start is reading our free Application Bulletin AB-280, which lists several substances.

Are you searching for Karl Fischer titration oven applications? Look no further – the Metrohm Application Finder contains several applications you can download for free! Check them out here:

If literature research does not reveal a suitable oven temperature, you must determine it yourself. How this is done depends upon the type of instrument you are using.

Some instruments offer you the possibility to run a so-called temperature gradient or temperature ramp. The sample is heated at a constant rate (e.g., 0.5 °C or 2 °C per minute) in a defined temperature range (e.g., 50 to 250 °C). At the same time, the released water is determined. In the end, the software will display a curve, showing you the released water as a function of the temperature. The following graph shows an example of such a temperature gradient curve.

The blue line corresponds to the determined water content, whereas the orange line indicates the drift value. An increasing drift signals the release of water, but it can also be a sign for decomposition, especially if the drift no longer decreases to a low level. In this graph, the drift peak at 50 °C corresponds to the blank value and free water. Between 120 and 200 °C, the drift value increases again, meaning the sample releases water. Then the drift decreases and remains low and stable up to 250 °C. There are no signs of decomposition up to 250 °C. As we do not know what would happen at temperatures above 250 °C, the optimal oven temperature for this sample is 230 °C (250 °C – 20 °C = 230 °C).

In case the instrument you use does not offer the option to run a temperature gradient, you can manually increase the temperature and measure the sample at different temperatures. In an Excel spreadsheet, you can display the curve (released water against temperature). If there is a temperature range where you see reproducible water contents, then you have found the optimal oven temperature.

Here is an example of a sample which started to decompose at temperatures above 106 °C (left sample vial) and thus is turning brown. An optimal temperature would therefore be 85 °C.

Sample analysis with a KF oven – step by step

After you have found the optimal oven temperature, water content determination in the sample can begin.

  • First, I recommend to run a system preparation. This means running a determination, but with an empty sample vial. During this preparation step, all tubes in the system are purged with dried carrier gas, and any traces of water are removed.
  • Next, you need to determine the blank value. The sample vials and the caps contain some residual moisture. With the blank determination, the amount of water contained in an empty sample vial is determined. The mean value of e.g. 3 blank value determinations is then subtracted from the water content obtained for the samples.
  • Finally, you can analyze the samples.

Please keep in mind that the same parameters for the system preparation, the blank value determination, and the sample determination must be used. This is of importance if you want to measure a check standard before and/or after the sample analysis or sample series. If the optimal oven temperature for the standard is different from the one for the sample, I recommend that you determine a blank value for the standard as well.

Checking an oven system

There are special, solid water standards available to check the performance of an oven system. These water standards are perfect to inspect the complete oven system and to ensure that the evaporated water reaches the titration cell and is determined there. Such standards include a certificate stating the water content.

Using the certified value, you can calculate the recovery when determining the water content of the standard with the oven. If the recovery value is between 97–103%, everything is fine. However, if the recovery is outside this range, the oven system should be checked for leaks or water deposits. It might be that only the molecular sieve needs to be exchanged. Possibly, the reagent is exhausted and needs to be replaced.

There are other reasons which explain recovery values which are too high or too low. The reason must be found, as incorrect recovery values also mean that the determined sample water content is wrong. Have a look at our free Application Bulletin 280 for detailed information on troubleshooting an oven system.

Summary

The oven method is a simple and convenient way to analyze difficult samples. Side reactions are reduced to a minimum. The titration cell and the reagent are not contaminated with sample. In case you have to analyze a large series of samples, automation of the oven method is possible. Have a look at the available instruments for the oven method on our website!

Want to learn more

about Karl Fischer titration

Watch our free webinars here!

Post written by Michael Margreth, Sr. Product Specialist Titration (Karl Fischer Titration) at Metrohm International Headquarters, Herisau, Switzerland.

Fresh shrimp – made in Switzerland?

Fresh shrimp – made in Switzerland?

Shrimp from Rheinfelden

SwissShrimp AG, based in Rheinfelden, Switzerland, is the largest producer of shrimp in Europe. Michael Siragusa, a chemist and Technical Operations Manager, introduced us to the company during a visit and explained why a fully automatic IC system from Metrohm plays the main role in monitoring water quality in the breeding pools.

SwissShrimp, which are locally grown without antibiotics, shown in the packaging available in some grocery stores in Switzerland.

An ideal location

Shrimp farms are usually associated with tropical fields, especially in Southeast Asia. Often, one also thinks of the dubious reputation these farms have due to their large ecological footprint. The SwissShrimp project in Rheinfelden shows that shrimp can also be produced on a large scale in Switzerland without exhausting nature and entirely without the use of antibiotics. According to Plant Manager Michael Siragusa, many individual factors are decisive for the success of the project. One of the most important of these is that SwissShrimp AG, at its Rheinfelden site, can cover a large part of the enormous power requirements for heating the breeding pools, at very favorable conditions, using heat from the nearby Swiss Salinen AG (Swiss Salt Works).

Inconspicuous: SwissShrimp produces its shrimp in this hall located in the middle of a green meadow.
The Swiss saltworks evaporate brine for salt production. Its waste heat supplies a large part of the energy for heating SwissShrimpʹs breeding pools.

Large technical effort

There is a tropical climate in the companyʹs large, inconspicuous hall: Shrimp of the species Litopenaeus vannamei (Pacific white shrimp) are raised in a total of 16 pools, each measuring 40 x 5 x 0.50 meters, on two floors. At a constant water temperature of 28 degrees Celsius, these pools each have up to 200,000 shrimp, with the animals in one pool all at roughly the same stage of development. SwissShrimp sources the larvae from special, certified breeders in Europe or the USA. It takes around six months before shrimp of up to 14 cm in length have developed from tiny larvae, which are barely two millimeters in size.

Densely stocked: Each of the 16 pools holds up to 200,000 shrimp.

Until the shrimp grow to full size, they are fed automatically with a special, organic dry feed. The grain size and composition of this feed varies depending on the stage of development. The dense stocking of the pools means that cleaning the water requires a great deal of effort. In a total of eight water circuits, the entire volume in the breeding pools is cleaned mechanically, biologically, and chemically 20 times a day using the latest filter technology; three percent of this volume is replaced daily. 

Waste recycling: The feed for the shrimp is mainly made from fish waste. The composition and grain size is precisely matched to the different development stages of the shrimp.

An IC system from Metrohm controls the water quality

«Water treatment is essential for us. We purify the water in our pools about 20 times per day.

In order to allow the shrimp to grow and keep the biological equilibrium of the plant, we have to keep a close eye on the toxic parameters… ammonium, nitrite, and nitrate.

If we performed this monitoring by an alternative method…, the 10 to 20 determinations would take the whole day, every day

Michael Siragusa

Technical Operations Manager, SwissShrimp AG

When it comes to monitoring the water quality in the breeding pools, a fully automated IC system from Metrohm comes into play: In the SwissShrimp company laboratory, the water of each of the 8 water circuits is examined daily for concentrations of toxic pollutants such as nitrite, nitrate, and ammonium, which are introduced into the water by the excretions of the shrimp.

Download our free Application Notes below to learn more about ion chromatography and the analysis of nitrite, nitrate, and phosphate in seawater from a shrimp farm.

In the company laboratory: The water quality is monitored fully automatically with a 930 Compact IC Flex, 940 Professional IC Vario, and 858 Professional Sample Processor. In order for the shrimp to thrive, it is important to detect any deteriorations in water quality at an early stage so that corrective measures can be initiated in good time. Altogether, around 2000 multi-parameter analyses are carried out annually at this measuring station.

On the other hand, saltwater parameters important for the shrimp to thrive are measured. These include chloride, sodium, magnesium, calcium, and potassium. Given the sheer number of parameters that need to be monitored, the advantage of ion chromatography comes into effect: IC is a multi-parameter method, i.e. several different parameters can be determined with a single measurement. In addition, not only does the analysis run automatically, but sample preparation with the inline ultrafiltration and dilution steps is also integrated into this process. In fact, SwissShrimp does not need a full laboratory assistant position thanks to Metrohmʹs automated analysis system.

Learn more here about Metrohm Inline Sample Preparation (MISP) for difficult sample matrices:

In the profit zone starting this year

The operation in Rheinfelden did not begin until 2018, and SwissShrimp is not yet operating profitably. However, production is expected to increase to 60 tons annually by the end of 2021. This is when the project, costing 25 million francs, would generate a profit for the first time. The company is currently investing in marketing in order to achieve this goal, because it is not yet well known that the best shrimp to be purchased in Switzerland come from Rheinfelden.

No frozen goods

Shrimp from Rheinfelden are a delicacy and are marketed as such, but only in Switzerland so far. Around 70 to 80 kilograms of shrimp currently leave the company every day, delivered only on order. The fresh shrimp are delivered directly to end customers and select markets of the two major Swiss retailers, Migros and Coop, via Priority Mail within 24 hours in special transport boxes specially developed for SwissShrimp with integrated Peltier cooling elements. On-site collection by the customer after ordering is also possible.

Fresh shrimp, grown daily on the northern border of Switzerland.

To learn more about the production of shrimp in Rheinfelden, visit the SwissShrimp website.

Further free Application Notes for the analysis of several ions in seawater via ion chromatography can be found on the Metrohm website.

Visit our website

to learn more about how automated IC analysis can help save valuable time in your lab

Post written by Roman Moser, Senior Editor and Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.

Frequently asked questions in near-infrared spectroscopy analysis – Part 1

Frequently asked questions in near-infrared spectroscopy analysis – Part 1

Whether you are new to the technique, a seasoned veteran, or merely just curious about near-infrared spectroscopy (NIRS), Metrohm is here to help you to learn all about how to perform the best analysis possible with your instruments.

In this series, we will cover several frequently asked questions regarding both our laboratory NIRS instruments as well as our line of Process Analysis NIRS products.

1. What is the difference between IR spectroscopy and NIR spectroscopy?

IR (infrared) and NIR (near-infrared) spectroscopy utilize different spectral ranges of light. Light in the NIR range is higher in energy than IR light (Figure 1), which affects the interaction with the molecules in a sample.

Electromagnetic Spectrum
Figure 1. The electromagnetic spectrum.

This energy difference has both advantages and disadvantages, and the selection of the ideal technology depends very much on the application. The higher energy NIR light is absorbed less than IR light by most organic materials, broadening the resulting bands and making it difficult to assign them to specific functional groups without mathematical processing.

However, this same feature makes it possible to perform analysis without sample preparation, as there is no need to prepare very thin layers of analyte or use ATR (attenuated total reflection). Additionally, NIRS can quantify the water content in samples up to 15%.

Want to learn more about how to perform faster quality control at lower operating costs by using NIRS in your lab? Download our free white paper here: Boost Efficiency in the QC laboratory: How NIRS helps reduce costs up to 90%.

The weaker absorption of NIR light leads to using long pathlengths for liquid measurements, which is particularly helpful in industrial process environments. Speaking of such process applications, with NIR spectroscopy, you can use long fiber optic cables to connect the analyzer to the measuring probe, allowing remote measurements throughout the process due to low absorbance of the NIR light by the fiber (Figure 2).

Electromagnetic Spectrum
Figure 2. Illustration of the long-distance measurement possibility of a NIRS process analyzer with the use of low-dispersion fiber optic cables. Many sampling options are available for completely automated analysis, allowing users to gather real-time data for immediate process adjustments.

For more information, read our previous blog post outlining the differences between infrared and near-infrared spectroscopy.

2. NIR spectroscopy is a «secondary technology». What does this mean?

To create prediction models in NIR spectroscopy, the NIR spectra are correlated with parameters of interest, e.g., the water content in a sample. These models are then used during routine quality control to analyze samples.

Values from a reference (primary) method need to be correlated with the NIR spectrum to create prediction models (Figure 3). Since NIR spectroscopy results depend on the availability of such reference values during prediction model development, NIR spectroscopy is therefore considered a secondary technology.

Electromagnetic Spectrum
Figure 3. Correlation plot of moisture content in samples measured by NIRS compared to the same samples measured with a primary laboratory method.

For more information about how Karl Fischer titration and NIR spectroscopy work in perfect synergy, download our brochure: Water Content Analysis – Karl Fischer titration and Near-Infrared Spectroscopy in perfect synergy.

Read our previous blog posts to learn more about NIRS as a secondary technique.

3. What is a prediction model, and how often do I need to create/update it?

In NIR spectroscopy, prediction models interpret a sample’s NIR spectrum to determine the values of key quality parameters such as water content, density, or total acid number, just to name a few. Prediction models are created by combining sample NIR spectra with reference values from reference methods, such as Karl Fischer titration for water content (Figure 3).

A prediction model, which consists of sufficient representative spectra and reference values, is typically created once and will only need an update if samples begin to vary (for example after a change of production process equipment or parameter, raw material supplier, etc.).

Want to know more about prediction models for NIRS? Read our blog post about the creation and validation of prediction models here.

4. How many samples are required to develop a prediction model?

The number of samples needed for a good prediction model depends on the complexity of the sample matrix and the molecular absorptivity of the key parameter.

For an «easy» matrix, e.g., a halogenated solvent with its water concentration as the measurement parameter, a sample set of 1020 spectra covering the complete concentration range of interest may be sufficient. For applications that are more complex, we recommend using at least 40–60 spectra in order  to build a reliable prediction model.

Find out more about NIRS pre-calibrations built on prediction models and how they can save time and effort in the lab.

5. Which norms describe the use of NIR in regulated and non-regulated industries?

Norms describing how to implement a near-infrared spectroscopy system in a validated environment include USP <856> and USP <1856>. A general norm for non-regulated environments regarding how to create prediction models and basic requirements for near-infrared spectroscopy systems are described in ASTM E1655. Method validation and instrument validation are guided by ASTM D6122 and ASTM D6299, respectively.

Figure 4. Different steps for the successful development of quantitative methods according to international standards.

For specific measurements, e.g. RON and MON analysis in fuels, standards such as ASTM D2699 and ASTM D2700 should be followed.

For further information, download our free Application Note: Quality Control of Gasoline – Rapid determination of RON, MON, AKI, aromatic content, and density with NIRS.

6. How can NIRS be implemented in a production process?

Chemical analysis in process streams is not always a simple task. The chemical and physical properties such as viscosity and flammability of the sample streams can interfere in the analysis measurements. Some industrial processes are quite delicate—even the slightest changes to the process parameters can lead to significant variability in the properties of final products. Therefore, it is essential to measure the properties of the stream continuously and adjust the processing parameters via rapid feedback to assure a consistent and high quality product.

Figure 5. Example of the integration of inline NIRS analysis in a fluid bed dryer of a production plant.

Curious about this type of application? Download it for free from the Metrohm website!

The use of fiber optic probes in NIRS systems has opened up new perspectives for process monitoring. A suitable NIR probe connected to the spectrometer via optical fiber allows direct online and inline monitoring without interference in the process. Currently, a wide variety of NIR optical probes are available, from transmission pair probes and immersion probes to reflectance and transflectance probes, suitable for contact and non-contact measurements. This diversity allows NIR spectroscopy to be applied to almost any kind of sample composition, including melts, solutions, emulsions, and solid powders.

Selecting the right probe, or sample interface, to use with a NIR process analyzer is crucial to successful process implementation for inline or online process monitoring. Depending upon whether the sample is in a liquid, solid or gaseous state, transflectance or transmission probes are used to measure the sample, and specific fitting attachments are used to connect the probes to the reactor, tank, or pipe. With more than 45 years of experience, Metrohm Process Analytics can design the best solutions for your process. 

Visit our website to find a selection of free Application Notes to download related to NIRS measurements in industrial processes.

7. How can product quality be optimized with process NIRS?

Regular control of key process parameters is essential to comply with certain product and process specifications, and results in attaining optimal product quality and consistency in any industry. NIRS analyzers can provide data every 30 seconds for near real-time monitoring of production processes.

Figure 6. The Metrohm Process Analytics NIRS XDS Process Analyzer, shown here with multiplexer option allowing up to 9 measuring channels. Here, both microbundle (yellow) and single fiber (blue) optical cables are connected, with both a reflectance probe and transmission pair configured.

Using NIRS process analyzers is not only preferable for 24/7 monitoring of the manufacturing process, it is also extremely beneficial for inspecting the quality of raw materials and reagents. By providing data in «real-time» to the industrial control system (e.g., DCS or PLC), any process can be automated based on the NIRS data. As a result, downtimes are reduced, unforeseen situations are avoided, and costly company assets are safeguarded.

Furthermore, the included software on Metrohm Process Analytics NIRS instruments has a built-in chemometric package which allows qualification of a product even while it is still being produced. A report is then generated which can be directly used by the QC manager. Therefore, the product quality consistency is improved leading to potential added revenues.

Do you want to learn more about improving product quality with online or inline NIRS analysis? Take a look at our brochure!

In the next part of this FAQ, we will cover even more of your burning questions regarding NIRS for lab and process measurements. Don’t forget to subscribe to the blog so you don’t miss out on future posts!

Want to learn more about NIR spectroscopy and potential applications? Have a look at our free and comprehensive application booklet about NIR spectroscopy.

Download our Monograph

A guide to near-infrared spectroscopic analysis of industrial manufacturing processes

Post written by Dr. Nicolas Rühl (Product Manager Spectroscopy at Metrohm International Headquarters, Herisau, Switzerland) and Dr. Alexandre Olive (Product Manager Process Spectroscopy at Metrohm Applikon, Schiedam, The Netherlands).

Exposing secrets of ancient Greek civilization through chemistry

Exposing secrets of ancient Greek civilization through chemistry

This week, learn the story of how analytical instrumentation from Metrohm helps underwater archaeology locate hidden treasures beneath the seafloor.

 

Antikythera Mechanism: a machine lost to time

One of the most fascinating items ever salvaged from an ancient shipwreck is the so-called «Antikythera Mechanism». More than 2000 years old, this magnificent piece of mechanical engineering forced the scientific community to rewrite the history of science as it became clear that its unknown maker must have possessed knowledge and skills that were believed to simply not exist in the 1st century BC.

Figure 1. Digital reconstruction of the Antikythera Mechanism.

The Antikythera Mechanism was a complex and highly precise lunar and solar calendar that could also predict solar and lunar eclipses as well as the future dates of the Panhellenic Games. The complexity and precision of this machine inspired not only scientists but also Hublot, the Swiss brand famous for their luxury watches. Not only did Hublot recreate the Antikythera Mechanism in a wristwatch but they also started their own underwater archaeology program. This project of Hublot is fascinating—and we from Metrohm are part of it on every dive.

 The device was retrieved from an ancient shipwreck (70 BC) found off the coast of the Greek island of Antikythera in 1901. Since then, researchers have tried to get to the bottom of its mysteries. Dated to approximately 100 BC, the Antikythera Mechanism was a shockingly complex piece of machinery, the likes of which were not seen elsewhere for at least another millennium.

One of the challenges faced by underwater archeology is the fact that the cargo and debris of ancient shipwrecks is often randomly scattered across vast areas on the seafloor and also often covered by sediments. Because only fragments of the mechanism have been found and recovered, retrieving the missing pieces of the Antikythera Mechanism would be a scientific sensation.

Figure 2. Location where the Antikythera Mechanism was found in 1901 at a shipwreck in Greece.

As divers can only operate for very limited time spans at depths below 50 meters, drones are needed to investigate larger areas on the seafloor at such depths. Hublot’s engineers have built drones for this purpose, known as «Bubblots», and have equipped them with miniaturized voltammetric measuring stands from Metrohm.

«With a metal detector, all you get is «beep-beep-beep», which means there is metal around. However, in a bronze statue, there is copper, there is tin, and you have to detect the oxides of them, the exact kind of material you are facing. We have decided for Metrohm, because you are the most competent for the measuring technology we need in our drones.»

Mathias Buttet

R&D Director, Hublot

The Bubblots are utilized to perform real-time analyses of the seawater for unusual concentrations of dissolved metal salts typically associated with corroding bronze artefacts. Thus, the systematic and highly selective investigation of larger areas of seafloor for historical bronze artefacts becomes feasible.

Figure 3. Hublot’s underwater drones, known as «Bubblots», and the voltammetric measuring stand from Metrohm.

Voltammetry to the rescue

Due to its selectivity regarding different metals and their oxidation states, voltammetry is ideally suited for such investigations, as it is also very fast and robust technique. In the case of Hublot’s drones, results are obtained in a few seconds and this information can be immediately processed.

«We use this Metrohm instrument for voltammetric measurements. We take a water sample and do a live measurement of the aspirated water. The voltammetric measurement takes only a few seconds. This is enough to give us an idea of the different metals present in the solution. This allows us to do highly selective measurements very fast to cover different regions of the archaeological site.»

Sébastien Recalcati

Materials Engineer, Hublot

For a selection of free Metrohm Application Notes related to voltammetric measurements in seawater, visit our website!

Figure 4. The 910 PSTAT mini from Metrohm used in the study.
Figure 5. One of Metrohm’s disposable screen printed electrodes (SPEs) utilized in Hublot’s drone analysis of the seafloor.

Giving the Antikythera Mechanism a second life

The maker of this mechanism was far ahead of his time. He must have had skills and possessed scientific knowledge that are mind-boggling even today. The watchmakers from Hublot were inspired by this to a very special project: they rebuilt the Antikythera Mechanism in a wristwatch.

«The original Antikythera Mechanism has the size of a shoe box. Reducing the size of the mechanism and putting it into a wrist watch was not so easy. Because the Antikythera Mechanism was not a clock, it was a machine with a driving crank to show the position of the moon and the sun in relation to the stars at any given date. The absolute dream is to find the missing parts of the machine. But the debris is hidden below the seafloor, covered by sediments, one meter, sometimes two meters.»

Mathias Buttet

R&D Director, Hublot

Figure 6. The Antikythera Mechanism miniaturized and captured in a Hublot wristwatch.

We are glad to support Hublot’s archaeological mission with our analytical instruments and our expertise in chemical analysis. Metrohm wishes the Hublot team all the best.

Visit our website to learn more

about this fascinating project and to discover more related applications from Metrohm

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.

History of Metrohm IC – Part 3

History of Metrohm IC – Part 3

Part 3 of this series on the history of ion chromatography development at Metrohm focuses on the near past, from the mid 2000s until a few years ago. Here, sequential suppression was introduced, making analysis even more sensitive with the removal of baseline disturbances from the chromatogram. In the rest of this blog post, I cover the 4th and 5th instrument generations, presenting professional, flexible, intelligent ion chromatography from Metrohm to the world.

Have you read the other parts in this series? If not, find them here to understand the history of IC development at Metrohm over the past few decades.

«An IC system so smart that it can make logical decisions on its own? For example, diluting samples automatically, if the concentration of your target analyte is too high and results would fall outside the calibrated range?»

Dr. Markus Läubli, R&D Ion Chromatography, Metrohm AG

«This is exactly what the 850 Professional IC and MagIC Net™ software can do. In fact, our Professional IC system takes care of the liquid handling & sample preparation with hardly any work required from the user!»

Dr. Andrea Wille, Manager Competence Center Ion Chromatography, Metrohm AG

2005: Sequential suppression is introduced

Sequential suppression was introduced in 2005 to overcome issues that arise from using chemical suppression alone.

In chemical suppression (using the packed bed Metrohm Suppressor Module, MSM), the dissociated carbonic acid from carbon dioxide attributes a background conductivity of approximately 15 µS/cm. This yields in relatively large water dips as well as system peaks (from carbonate). Depending on the carbonate concentration, the system peak may interefere with other peaks of interest in the chromatogram.

Furthermore, the pH in a peak changes due to the increasing concentration of H+, as e.g. chloride is eluted as HCl. This pH change induces a decreasing baseline as the hydrogen carbonate—carbonic acid equilibrium is pushed towards development of carbonic acid. The effect is schematically illustrated in Figure 1.

Here, the calculated baseline is marked with the straight red line, but the real baseline shows small negative deviations under the analyte peaks. This negative peak area is not taken into account for the quantification of the respective analyte. This and other effects result in a deviation from the linearity of the calibration curve. In most cases it is therefore recommended to apply a quadratic curve fit.

Figure 1. Chromatogram with chemical suppression. The blue area is not taken in to account in the quantification. Negative peaks: real baseline due to pH change.

Download our free poster: Sequential suppression for conductivity detection in ion chromatography. The poster describes how different suppressors (MSM and MCS) work and mentions possible applications. 

Sequential suppression for anions

The term «sequential suppression» represents the combination of chemical suppression and CO2 suppression. The Metrohm CO2 Suppressor (MCS) removes CO2 from the eluent (mobile phase) after chemical suppression, but before detection. This shifts the equilibrium from hydrogen carbonate towards dissolved CO2. Applying sequential suppression therefore reduces the background conductivity to < 1 µS/cm, corresponding to ultrapure water itself.

As an effect of sequential suppression, the water dip as well as the system peak (carbonate peak) is reduced dramatically. The former allows easier integration of the early eluting peaks (Fig. 2), e.g. fluoride. The latter reduces the interference and disturbance of peaks of interest. Using the MCS in combination with the MSM, there are no negative baseline peaks present in the chromatogram, and the linearity is improved. Nevertheless, it is still recommended to apply a quadratic curve fit when calibrating a concentration range of one or more orders of magnitude.

Figure 2. Overlay of a chromatogram of standard anions with chemical suppression (MSM alone, blue) and a chromatogram of the same standard, but while applying sequential suppression (MSM + MCS, red). The water dip (1, injection peak) and the system peak (2, carbonate peak) are no longer present with sequential suppression.

Here you can find a selection of free application notes for download using sequential suppression for both anions and cations.

4th generation: Intelligent ion chromatography – 2007

The fourth generation of Metrohm ion chromatography was introduced in 2007, bringing with it a higher level of detection data handling and finally adding intelligence to the IC instruments.

After the introduction of the 850 Professional IC series in 2007, the respective compact versions (881 Compact IC pro and 882 Compact IC plus) were launched in 2009 (Figure 3), offering IC systems for all kinds of laboratories and sample throughput needs. The 883 Basic IC plus followed shortly after this as well in 2009 (Fig. 3).

Figure 3. New additions to the Metrohm IC family (left to right): The 850 Professional IC, 881 Compact IC pro, 882 Compact IC plus, and 883 Basic IC plus.

Aside from general improvements on the hardware modules, the conductivity detector was switched from analog to digital. The previous iteration consisted of a stand-alone detector block and an electronic unit, which was able to cover the full signal range of conductivity for IC. However, it was required to select a dedicated measuring range and an optimal full-scale (e.g., 20 µS/V) for the best signal quality.

The new IC Conductivity Detector for 850 Professional IC instruments consisted of only the «detector block» itself. The complete electronics were now integrated within the thermostated detector block. Besides the digital data acquisition capability, this significantly improves the signal stability which yields in an extremely low noise level. The digital detector could now handle the full conductivity range without the need for any range or full-scale settings.

MagIC Net, the new fully in-house developed software for both hardware control and data handling, brought many enhanced features and capabilities to the world of Professional IC (Figure 4). Here, «Intelligent IC» was born. Intelligent IC stands for the automatic recognition of most of the hardware components, e.g., the high pressure pump, the separation column, etc. This information is stored in every determination, allowing users full system traceability for each analysis.

Figure 4. MagIC Net software for the full hardware control and data handling of Metrohm IC instruments.

MagIC Net also brought forth many special control functions enabling sophisticated Inline Sample Preparation and automatic calibration techniques. Logical decisions are available, allowing analysts to perform logical dilutions for example. Here, the logical decision-making software decides whether an analysis is a standard, a QC standard, or a sample. After the chromatographic run, the results can be tested for concentrations out of the calibration range. When such outliers are found, MagIC Net calculates new dilution factors and automatically re-runs the samples with the new values. At the end, perfect results are available for all analytes without manual redilution and re-injection.

5th generation: Modular flexibility arrives – 2013

The fifth generation of Metrohm ion chromatography arrived with an upgrade to the Professional IC system allowing even more application capabilities. The 940 Professional IC Vario and the 930 Compact IC Flex were introduced in 2013 (Figure 5).

Figure 5. The Metrohm 940 Professional IC Vario (left) and the 930 Compact IC Flex (right), developed with flexibility in mind.

These instruments were followed in quick succession by the 942 Extension Modules Vario as well as the stand-alone 945 Professional Detector with conductivity and/or amperometric detection options to further broaden application suitability.

The 941 Eluent Production Module, also introduced in 2013, enabled the continuous preparation of all types of eluents via dilution of concentrated mobile phase constituents. Commercial as well as homemade concentrates may be applied. Therefore, the eluent production is not reduced to standard or costly eluents.

Figure 6. Ultimate modularity for the laboratory – mix and match modules: the Metrohm 940 Professional IC Vario TWO/ChS set up for AnCat analysis, containing 2 IC Conductivity Detectors, sitting atop two 942 Extension Modules Vario LQH and a 941 Eluent Production Module.

Intelligent IC: Not only limited to the laboratory

After the introduction of the new MagIC Net software for IC analysis, an updated version of the Metrohm IC process analyzer from Metrohm Process Analytics was also developed and launched. In 2016, the Process IC ONE and Process IC TWO were introduced, only differing in the amount of measurement channels and detectors (Figure 7). These process analyzers were built using the 940 Professional IC Vario series with the same functionality for the laboratory, in a rugged housing suitable for harsh industrial conditions.

The use of various MISP techniques (Metrohm Inline Sample Preparation) such as Inline Ultrafiltration and Inline Dilution, along with nine configurable wet part modules for further sample conditioning, integrated eluent production, and the possibility to connect one system to up to 20 process points for time-saving sequential analysis at multiple areas inside of a plant further expanded the application capabilities beyond what any lab instrument could offer. The use of liquid level sensors and integrated alarms for leakages and out-of-specification data results in maximum analyzer uptime due to reduced maintenance intervals.

Figure 7. The Metrohm Process IC TWO configured for AnCat analysis, with optional PURELAB® flex 5/6 from ELGA®, a pressureless inline ultrapure water feed.

Are you interested in ion chromatography applications for industrial process analysis and optimization? Did you know that you can also monitor the air quality indoors as well as in the environment with these products? Check out our selection of FREE Process Application Notes (PANs) for IC:

What’s next?

After the mid 2010s, more focus was given to the development of hyphenated techniques to support IC as part of a comprehensive analytical solution for more difficult sample matrices and analytes. In the next installment, I will discuss TitrIC, VoltIC, Combustion IC (CIC), and more, as well as what is on the horizon for the process analysis world. Stay tuned, and don’t forget to subscribe to the blog!

Visit our website

to find out more about Metrohm Inline Sample Preparation (MISP)

Post written by Dr. Markus Läubli, Manager Marketing Support IC at Metrohm International Headquarters, Herisau, Switzerland.

Trace metal analysis with solid-state electrodes – Part 3

Trace metal analysis with solid-state electrodes – Part 3

In Part 2 of this series on trace metal analysis with solid-state electrodes, we introduced the scTRACE Gold electrode. The third part of this series explains even more applications which can be performed with this electrode, but this time after modifying the gold micro-wire with a thin layer of another metal.

Catch up on the series «Trace metal analysis with solid-state electrodes» here:

Why modify the electrode material?

As explained for the Bi drop electrode in Part 1 of this series, stripping voltammetry is a two-step measurement.

In the first step, the analyte is deposited on the working electrode. In the case of anodic stripping voltammetry (ASV), the analyte is reduced and forms an alloy with the electrode material (Fig. 1). In the case of adsorptive stripping voltammetry (AdSV), the analyte forms a complex which is adsorbed to the working electrode.

In the subsequent stripping step, the deposit is brought back into solution, giving the analytical signal which is proportional to the deposited amount of analyte. In the case of ASV, the electrochemical reaction is the re-oxidation of the analyte during an anodic scan (Fig. 2). In the case of AdSV, the adsorbed metal complex is reduced during a cathodic scan.

Figure 1. Anodic stripping voltammetry (ASV) with Ag film modified scTrace Gold electrode – deposition of lead (solution stirred).

Figure 2. Anodic stripping voltammetry (ASV) with Ag film modified scTrace Gold electrode – stripping of lead (solution not stirred).

Both steps, deposition as well as stripping, are subject to the principles of kinetics and thermodynamics. Without going into detail, the result is simply that some analytes cannot be determined with certain electrode materials. One way to solve this problem is to modify an existing working electrode with a different material that is more suitable.

Applications

Lead in drinking water

Most of the lead which is present in surface and ground water is of anthropogenic origin, resulting from the leaching of contaminated soils. Lead in tap water, however, often originates from the household plumbing system. Pipes from lead metal were popular in some countries until the 1970s. Although Pb is barely soluble in water, it slowly dissolves in the presence of oxygen. As a result, the allowed limit for lead in tap water can be easily exceeded by a significant amount. Now lead pipes for municipal water transport are forbidden, but there are still houses with old installations intact. The WHO (World Health Organization) recommends a limit value for lead in drinking water of 10 µg/L. In the European Union, the upcoming limit is as low as 5 µg/L.

For the determination of lead, the scTRACE Gold electrode is modified with a silver film. The film is plated ex situ from a separate plating solution. Once plated, it can be used for multiple determinations. When the film is depleted, it can be removed, and then a fresh film is plated again. A side effect of the silver film is that the scTRACE Gold electrode lasts longer, since aging processes mainly affect the renewable silver film. In a repeatability study, determining 10 µg/L Pb with 3 different electrodes on 4 different days (total number of determinations = 10) the average recovery of Pb was 96% with a relative standard deviation of 5%.

Using the 884 Professional VA it is possible to measure lead concentrations in water down to 0.4 µg/L, allowing a simple and reliable determination of even the future limit in the European Union.

With the 946 Portable VA Analyzer, the limit of detection is only slightly higher: 0.6 µg/L. However, the mobile use offers the possibility for close monitoring of individual installations without the need to preserve samples and send them in to a central lab. Furthermore, the concerned resident gets an immediate result on the spot.

Free Application Note download: AN-V-214 Lead in drinking water – Straightforward determination by voltammetry using a gold microwire electrode.

If you want to learn more about our voltammetry product lines, lab as well as mobile, check out our website!

Nickel and cobalt in drinking water

Similar to lead, nickel concentrations present in water sources can be increased by human influence as well. Plumbing fixtures and faucets are often plated with a thin layer of nickel for protection against corrosion, even if the finish is made of chromium. Furthermore, nickel is part of many alloys from stainless steel to nickel brasses and bronze. Nickel steel alloy cookware or nickel pigmented dishes can also cause increased nickel levels. The maximum allowed level in drinking water in the European Union is 20 µg/L whereas the WHO recommends a limit of 70 µg/L.

For the voltammetric determination of nickel and cobalt, an ex situ plated bismuth film on the scTRACE Gold electrode is used as working electrode. Nickel as well as cobalt are determined in the form of their DMG (dimethylglyoxime) complex. This method had already proven its reliability with the mercury electrode, and therefore this application can now be transferred to a mercury-free electrode. With a detection limit of 1 µg/L with the 946 Portable Analyzer, and even lower at 0.2 µg/L with the 884 Professional VA lab instrument, the method is surely sufficient to monitor the compliance with legal requirements. The recovery for 1 µg/L Ni in a standard solution is about 99% (mean of 10 determinations) with a relative standard deviation of 5%.

Free Application Note download: AN-V-217 Nickel, cobalt in drinking water – Straightforward determination by voltammetry using a gold microwire electrode.

Chromium(VI) in drinking water

The problem of chromium(VI) in drinking water was brought to the attention of the general public with the movie «Erin Brockovich» in 2000, starring Julia Roberts. The plot is based on a true story, which happened in the small community of Hinkley, California, where the local energy provider contaminated the groundwater with the carcinogenic hexavalent chromium. The company attempted to cover up the incident, but an increased number of tumors and other health problems among the residents could finally be traced back to the contaminated drinking water.

Contamination with Cr(VI) in the environment is usually the result of improper handling of various industrial processes, especially abandoned waste dumped from galvanic chromium plating. The WHO recommends a maximum limit of 50 µg/L total chromium for drinking water

After modifying the scTRACE Gold electrode with an ex situ plated mercury film, Chromium(VI) can be determined as a complex with DTPA (diethylenetriaminepentaacetic acid). The recovery of a standard containing 30 µg/L Cr(VI) is 115% (mean of 3 determinations) with a relative standard deviation of 2%. Using the 946 Portable VA Analyzer it possible to determine concentrations down to 2 µg/L Cr(VI), allowing the on-site determination, providing immediate results without delay.

Free Application Note download: AN-V-230 Chromium(VI) in drinking water – Sensitive determination on the mercury film modified scTRACE Gold (DTPA method).

Summary

Talking about all of the applications that are possible with the scTRACE Gold electrode would go beyond the scope of this blog. The table here gives an overview of several elements for which methods with the scTRACE Gold are currently available from Metrohm. Your local Metrohm representative can assist in case of questions regarding the determination of one of the elements, or analysis in a specific matrix.

Figure 3. The scTRACE Gold electrode from Metrohm is suitable for trace analysis of several elements in water.

Overview: Applications with the scTRACE Gold
Element Application document
As(total) Application Note V-210
As(III) Application Note V-211
Hg Application Note V-212
Cu Application Note V-213
Pb Application Note V-214
Zn Application Note V-215
Tl Application Note V-228
Fe Application Note V-216
Ni, Co Application Note V-217
Bi Application Note V-218
Sb(III) Application Note V-229
Cr(VI) Application Note V-230

What’s next?

In Part 4 of this series, I will discuss the use of screen-printed electrodes (SPEs) which had already been introduced in the blog post «Virus detection using screen-printed electrodes». However, this time the focus will be on the determination of heavy metals using these disposable electrodes.

Post written by Barbara ZumbrägelProduct Manager VA/CVS at Metrohm International Headquarters, Herisau, Switzerland.

Forewarned is Forearmed: Error and risk minimization in process analysis – Part 3

Forewarned is Forearmed: Error and risk minimization in process analysis – Part 3

In the course of life, each of us learns to trust our gut feelings or our experiences to avoid situations that seem dangerous or risky. You quite literally sense potential dangers with an uneasy feeling. Who hasn’t painfully learned that touching a hot stove top isn’t a good idea? Or who voluntarily goes outside during a tornado?

While humans can rely on their intuition and learned patterns to avoid dangers or use protective strategies, this is far more complicated with electronic systems or machines. All components of a system must be in a permanently safe state. Failures and malfunctions of individual components can have devastating consequences for production processes and the safety of the operators.

An example of this is the Seveso disaster in 1976, in which highly toxic dioxin TCDD escaped as a result of an uncontrolled reaction, and sustainably poisoned flora and fauna. With regard to other major chemical accidents, the European Seveso III Directive then came into force in 2012 to control major accident hazards to prevent major accidents.

Have you read Part 1 and Part 2 of our «Advantages of PAT (Process Analytical Technology)» series? If not, find them here!

Recognize, master, and avoid errors

Process engineering systems that are operated continuously contain countless components that can wear out or fail during their life cycle. However, if the measuring, control, or regulating circuit is affected, failures can cause immense damage. Under no circumstances should humans nor the environment be exposed to any kind of danger. For this reason, the functional safety of the components must be guaranteed, and their risk and hazard potential must be analyzed in detail.

The service life of mechanical components can be evaluated by observing mechanical wear and tear. However, the aging behavior of electronic components is difficult to assess. A unit of measure that makes risk reduction and thus functional safety quantifiable is the so-called «Safety Integrity Level» (SIL). 

The following procedure is followed:

  1.   Risk analysis
  2.   Realization of risk reduction
  3.   Evidence that the realized risk reduction corresponds at least to the required risk reduction

«Process analysis systems are part of the entire safety cycle of a manufacturing plant and therefore only one component whose risk of malfunctions and failures must be considered in an assessment.»

Risk assessmentA process is considered safe if the current risk has been reduced below the level of the tolerable risk. If safety is ensured by technical measures, one speaks of functional safety.

Significance for process analysis systems

Errors can happen anywhere, and can never be completely excluded. To minimize possible errors, it is therefore necessary to estimate the risk of occurrence and the damage to be expected from it as part of a risk analysis. A distinction must be made here between systematic and random errors.

Systematic errors are potentially avoidable and are caused, for example, by software errors or configuration deficiencies. Accordingly, they already exist during or prior to commissioning.

In contrast, random errors are potentially difficult to avoid because they occur arbitrarily. Nevertheless, the error rate or failure probability can be determined statistically and experimentally.

Random errors usually result from the hardware and occur during operation. Ultimately, systematic errors should be avoided, and random errors should be mastered to ensure trouble-free functionality.

Process analysis systems are the link between manual laboratory analysis and the industrial process. In applications where continuous and fully automatic monitoring of critical parameters is required, process analyzers are indispensable. Due to the different analysis conditions in the laboratory and directly in the process, there are some challenges when transferring the measurement technology from the lab to the process. The decisive factors are the working and environmental conditions (e.g., high temperatures, corrosive atmospheres, moisture, dust, or potentially explosive environments) which the process analyzers have to meet regarding their design, construction materials, and reliability of the components. The analyzer automatically and continuously transmits system and diagnostic data to prevent hardware or software components from failing through preventive measures. This significantly reduces the chance of random errors occurring.

General process analyzer setup

a) Analyzer Setup

Process analyzers have been specially developed for use in harsh and aggressive industrial environments. The IP66 protected housing is divided into two parts, and consists of separate wet and electronic parts. The electronics part contains all components relevant to control and operate the process analyzer. Modular components like burettes, valves, pumps, sampling systems, titration vessels, and electrodes can be found in the analyzer wet part. Representative samples can thus be taken from the process measuring point several meters away. The analysis procedure, the methods to be used, and method calculations are freely programmable.

A touchscreen with intuitive menu navigation allows easy operation, so that production processes can be optimized at any time. The course of the measurement is graphically represented and documented over the entire determination, so that the analysis process is completely controlled. The measurement results can be generated 24/7 and allow close and fully automatic monitoring of the process. Limits, alarms, or results are reliably transferred to the process control system.

When operating the analyzer, there is a risk that software errors can lead to failures. In order to recognize this with foresight, the system delivers self-diagnostic procedures as soon as it is powered on and also during operation. This includes, e.g., checking pumps and burettes, checking for leaks, or checking the communication between the I/O controller, the human interface, and the respective analysis module.

b) Sensors

The central component of a process analyzer is the measurement technique in use. In the case of sensors or electrodes, there are several requirements such as chemical resistance, ease of maintenance, robustness, or precision which they must meet. The safety-related risk arises from the possibility if measurement sensors fail due to aging, or if they become damaged and subsequently deliver incorrect measurement results.

Failure of the electrode, contamination, or damage must be reported immediately. With online analysis systems, the analysis is performed in an external measuring cell. In addition, recurring calibration and conditioning routines are predefined and are performed automatically. The status of the electrode is continuously monitored by the system.

Between measurements, the electrode is immersed in a membrane-friendly storage solution that prevents drying out and at the same time regenerates the swelling layer. The electrode is therefore always ready for use and does not have to be removed from the process for maintenance. This enables reliable process control even under harsh industrial conditions.

c) Analysis

Process analyzers must be able to handle samples for analysis over a wide concentration range (from % down to trace levels) without causing carry-over or cross-sensitivity issues. In many cases, different samples from several measuring points are determined in parallel in one system using different analysis techniques. The sample preparation (e.g., filtering, diluting, or wet chemical digestion) must be just as reliable and smooth as the fully automatic transfer of results to the process control system so that a quick response is possible.

Potential dangers for the entire system can be caused by incorrect measurement results. In order to minimize the risk, a detector is used to notify the system of the presence of sample in the vessel. The testing of the initial potential of the analysis or titration curves / color development in photometric measurements are diagnostic data that are continuously recorded and interpreted. Results can be verified by reference analysis or their plausibility can be clarified using standard and check solutions.

Detect errors before they arise

The risk assessment procedures that are carried out in the context of a SIL classification for process engineering plants are ultimately based on mathematical calculations. However, in the 24/7 operation of a plant, random errors can never be completely excluded. Residual risk always remains. Therefore, the importance of preventive maintenance activities is growing immensely in order to avoid hardware and software failures during operation.

A regular check of the process analyzer and its diagnostic data is the basic requirement for permanent, trouble-free operation. With tailor-made maintenance and service concepts, the analyzer is supported by certified service engineers over the entire life cycle. Regular maintenance plans, application support, calibration, or performance certificates, repairs, and original spare parts as well as proper commissioning are just a few examples.

Advantages of preventive maintenance from Metrohm Process Analytics

  • Preservation of your investment
  • Minimized risk of failure
  • Reliable measurement results
  • Calculable costs
  • Original spare parts
  • Fast repair
  • Remote Support

In addition, transparent communication between the process control system and the analyzer is also relevant in the context of digitalization. The collection of performance data from the analyzer to assess the state of the control system is only one component. The continuous monitoring of relevant system components enables conclusions to be drawn about any necessary maintenance work, which ideally should be carried out at regular intervals. The question arises as to how the collected data is interpreted and how quickly it is necessary to intervene. Software care packages help to test the software according to the manufacturer’s specifications, to perform data backup and software maintenance.

«Remote support is particularly important in times when you cannot always be on site.»

In real emergency situations in which rapid error analysis is required, manufacturers can easily support the operator remotely using remote maintenance solutions. The system availability is increased, expensive failures and downtimes are avoided, and the optimal performance of the analyzer is ensured.

Read what our customers have to say!

We have supported customers even in the most unlikely of places⁠—from the production floor to the desert and even on active ships!

Post written by Dr. Kerstin Dreblow, Product Manager Wet Chemical Process Analyzers, Deutsche Metrohm Prozessanalytik (Germany).

History of Metrohm IC – Part 2

History of Metrohm IC – Part 2

In the second part of our series behind the development of high quality ion chromatography instrumentation at Metrohm, I will cover the mid 1990s until the mid 2000s. During this time, Metrohm focused on modular IC, lowering background suppression, as well as bringing further robust detection methods on to the market.

Did you miss Part 1? Click here to read the first part of our series on the history of ion chromatography at Metrohm:

«The 1990‘s. People start to care about the environment. Authorities impose quantitative limits on the presence of many substances, most of which must be detected down to trace levels. Metrohm builds the perfect tool for this: the 761 Compact IC.»

Dr. Helwig Schäfer, retired Head of R&D Ion Chromatography, Metrohm AG

2nd generation: The modular IC system – 1996

While the Labograph was soon replaced by integrators (initially with integrators and later on by PC-based integration tools), the conductivity detector stood unbeaten for a long period. Improvements to the system setup, as well as additional liquid handling tools and automation capabilities yielded the second generation of Metrohm IC: the modular system.

At the same time, the initial patents on chemical suppression were about to expire, allowing the possibility to begin the development of the Metrohm Suppressor Module.

Metrohm Suppressor Module (MSM)

The idea for the MSM is based on the suppression column as described in the paper by Small, Stevens, and Baumann [1]. Its main purpose is to remove the eluent conductivity after the separation and prior to the conductivity detection. Thus, the eluent needs to be convertible to water by ion exchange.

In the case of anion chromatography, sodium hydroxide is an example of such a candidate. By replacing sodium by a proton through ion exchange, the eluent is converted to water alone. The authors applied a suppressor column of opposite charge (compared to the analytical column) after the analytical column [1].

The Metrohm Suppressor Module.

As with all things, suppressor columns do have a couple of disadvantages. They have to be externally regenerated on occasion. Depending on the amount of cations already bound to the suppressor column, its separation and ion-exclusion behavior is modified. This leads to changes in retention times of the ions, especially regarding the carbonate peak, which shifts quite strongly and interferes with other peaks of interest. On the other hand, one of the most positive points of suppressor columns is their ruggedness.

Metrohm was looking for solutions to the disadvantages without compromising the ruggedness of this column-based approach.

To overcome the shifting retention time over the usage of suppressor columns, the dimensions of the column were reduced dramatically. This yielded in a small cartridge-like compartment. The exchanger capacity needed to stay high enough for running, minimally, one single chromatogram. Under the precondition that only one chromatogram is suppressed with a single suppressor compartment, in this way all determinations have exactly the same conditions and no retention time shifts can occur.

Now it was required to regenerate the suppressor compartment prior to the next sample injection. Here, the idea of a rotating unit with three compartments was born. 

All three compartments are connected to a liquid stream: i.e. unit 1 suppresses the eluent conductivity in the analytical stream, unit 2 is being regenerated with acid, and unit 3 is rinsed (acid-free) with ultrapure water or with the detector effluent (now known as STREAM). Prior to each injection, the MSM rotor is switched by one position. In this way, each injection uses its own freshly regenerated and rinsed suppressor unit.

The final suppression setup was launched as the 753 Suppressor Module in 1996 together with the modular system consisting of the 732 Conductivity Detector, 709 IC Pump, 733 IC Separation Center, and the 766 IC Sample Processor plus further liquid handling modules. Together with IC Net, the PC-based data acquisition and handling software, full automation of the ion chromatographic system was available

The Metrohm 753 Suppressor Module. 
Modular IC at Metrohm, circa 1996.

While modular IC was extremely flexible and opened up possibilities for a high grade of automation opportunities, it also was quite complex for straightforward, everyday applications.

This routine IC required for general users was introduced in 1999 as the first all-in-one ion chromatograph – the 761 Compact IC. It was the ideal instrument to run standard applications on directly due to the integration of all basic components required for IC analysis. These included: IC pump, injector, Metrohm Suppressor Module with peristaltic pump for regeneration (when required) and rinsing and the conductivity detector. The 761 Compact IC was the first instrument available in only a metal-free version.

The Metrohm 761 Compact IC. 

IC with built-in amperometric detection

The initial 641 VA Detector and its successor the 791 Amperometric Detector were electronic high-performance instruments requiring a quite high level of knowledge in electrochemistry. Handling and maintenance were not easy tasks, however, analysts which were familiar with these products were extremely happy.

The Metrohm 641 VA Detector and its successor, the 791 Amperometric Detector.

By then, setting voltages manually, as well as compensating the background with potentiometers was outdated. Therefore, Metrohm introduced the 817 Bioscan in 2001.

The Metrohm 817 Bioscan.

It was based on the concept of Compact IC. The 817 Bioscan consisted of the amperometric detector used mainly for Pulsed Amperometric Detection (PAD) applications, a built-in column oven, the 812 Valve Unit (injector), and the 709 IC pump. This was Metrohm’s entry to the analysis of sugars.

The 791 Amperometric Detector (introduced in 1998 as the successor of the of the 641 VA Detector), was still dedicated for use as the ideal detector for applications applying DC amperometric detection.

3rd generation: Advanced Modular IC – 2003

In 2003, Metrohm introduced the «Advanced Modular IC» system, featuring the same modularity and remote control concept as the previous «Modular IC», but with improved capabilities added to the individual modules. Both the data acquisition and remote control were still managed by the IC Net software.

Around the same time period, the 811 Online IC was developed, as a more suitable instrument for the harsh environmental conditions of industrial production processes. Weighing in at approximately 450 kg, this heavyweight was built with a top-of-the-line Metrohm modular IC system and was controlled by IC Net software, coming in two versions: single channel as well as a dual channel version to measure both anions and cations. This process analyzer was combined with a modular wet part setup, which allowed the use of various modules (e.g., 10-way sampling valve or tubing pump), so the IC could be fully customized to meet customer requirements for any application.

The 811 Online IC (2001) and its successor, the 821 Compact Online IC (2002).

Due to the success of the 811 Online IC, in 2002 a smaller version was introduced: the 821 Compact Online IC. It was commonly referred to as the «little brother» due to its lighter weight and reduced size.

In 2005, the 861 Advanced Compact IC was introduced to the laboratory world, and in the same year the 844 UV/VIS Compact IC was placed on the market. This was both the first Metrohm UV/VIS IC as well as the first all-in-one UV/VIS ion chromatograph. It was dedicated to direct as well as post-column reaction applications with photometric detection. The 844 UV/VIS Compact IC was complementary to the Bischoff Lambda 1010, used in modular systems as an optional optical detector.

The Metrohm 844 UV/VIS Compact IC (front view).
The Metrohm 844 UV/VIS Compact IC (inside view).

What’s next?

In Part 3, I will continue into the later 2000s and beyond, covering the evolution of sequential suppression (the combination of chemical suppression and CO2 suppression) in addition to the 4th and 5th generations of Metrohm ion chromatography.

Subscribe to the blog below so you don’t miss out!

Download our free White Paper for more information about suppression

When HPLC fails: IC in food, water, and pharmaceutical analysis

Reference

[1] Small, H.; Stevens, T.S.; W.C. Baumann. Novel ion exchange chromatographic method using conductimetric detection. Anal. Chem. 1975, 47 (11), 1801–1809. https://doi.org/10.1021/ac60361a017

Post written by Dr. Markus Läubli, Manager Marketing Support IC at Metrohm International Headquarters, Herisau, Switzerland.