Select Page
Photometric complexometric titration

Photometric complexometric titration

…and how to choose the right wavelength for indication

Complexometric titration was discovered in 1945 when Gerold Schwarzenbach observed that aminocarboxylic acids form stable complexes with metal ions, which can change their color by addition of an indicator. From the 1950’s on, this technique gained popularity for the determination of water hardness. Soon it was clear that aside from magnesium and calcium, other metal ions could also be titrated in this way. The use of masking agents and new indicators gave further possibilities to determine not only the whole amount of metal ions present in solution, but also to separate and analyze them. A new titration type was born: complexometric titration.

Dear readers, have you ever performed a complexometric titration? According to my assumption, quite a lot of you will respond with “yes” as it is one of the most frequently used types of titration. However, I assume you probably struggled over the detection of the endpoint and over the titration itself. In contrast to other types of titrations, the boundary conditions such as pH and reaction time play an even bigger role in complexometry since the complex binding constant is very pH dependent and the reaction might be slow. This article presents the most common challenges and how to overcome them when carrying out complexometric titrations.

For a complexometric titration analysis, it is very important to know the qualitative composition of your sample. This determines the indicator, the complexing agent, and the masking agent you need to use.

Due to the length of the article, I have provided an easy legend of the topics so you can click and jump directly to the area that interests you the most.

Complexometric titration and complex-forming constant

Complexometric reactions always consist of a metal ion which reacts with a ligand to form a metal complex. Figure 1 shows an example of such a chemical reaction of a metal ion Mn+ with Ethylene diamine tetra acetic acid (EDTA). EDTA is the most commonly used titrant for complexometric titrations and reacts in a stoichiometric ratio of 1:1. As shown on the right side of Figure 1, EDTA can form six coordinational bonds, in different words: EDTA has a denticity of six. The more coordinational bonds a ligand can form, the more stable is the formed complex.

Figure 1. Example complexation reaction of a metal M with charge n+ with EDTA.

As with most chemical reactions, this type of reaction stays in an equilibrium. Depending on the metal ion used, this equilibrium can shift more to the left (reactants) or on the right (products) of the equation. For a titration, it is mandatory that the equilibrium is on the right side (complex-forming). The equilibrium constant is defined as shown in Equation 1.

Equation 1. Equilibrium constant, where c = concentration of the individual substances.

Equation 1 also illustrates why it is so important to keep the pH value constant. The concentration of hydronium ions influences the complex-forming constant by a factor of the square of its concentration (e.g., if one titrated with H2Na2EDTA). This means if the pH value of the reaction is changed, its complex-forming constant is also changed, which influences your titration.

Generally, the higher the concentration of the complex in comparison to the free metal / Ligand concentration, the higher the Kc and also the log(Kc) value. Some log(Kc) values are shown later on in Table 2 and can give you a hint regarding which titrant is most suitable for your titration.

Complexometric reactions are often conducted as a photometric titration. This means an indicator is added to the solution so that a color change at the endpoint can be observed. 

Color Indicator

As in acid–base titration, the color indicator is a molecule which indicates when the end of titration (the endpoint, or EP) is reached by a change in the solution color. For acid–base titration, the color change is induced by a change of pH, whereas in complexometric titration the color change is induced by the absence/presence of metal ions. Table 1 gives you an overview of different color indicators and the metals which can be determined with them.

Table 1. List of color indicators for different kinds of metal ions.

It is very important to choose the right indicator, especially when analyzing metal mixtures. By choosing an appropriate indicator, a separation of the metal ions can already take place.

As an example, consider a mixture of Zn2+ and Mg2+, which is titrated with EDTA. The log(Kc) value for the zinc ion is 16.5, and 8.8 for the magnesium ion. If we choose to titrate this sample with PAN-indicator then the indicator will selectively bind to the zinc, but not magnesium. As zinc has the higher complex-formation constant, the zinc ion will react first with EDTA, which will lead to a color change, and the endpoint can be detected. In such a case, the separation of the ions is possible. If this is not the case, the choice of a more suitable complexing agent might help you to obtain a separation of metal ions.

Complexing agent

At the beginning of your titration, the metal ions are freely accessible. By addition of the complexing agent (your titrant), the metal ions become bound. The prerequisite for that is a higher complex-formation constant of the metal with the complexing agent than with the indicator. In 95% of cases, this does not pose a problem. Some complexing agents are mentioned in Table 2. In general, ions with higher charges will have a higher complex-formation constant. 

However, what can you do if you are still not able to separate your metal ions sufficiently and determine them individually? The answer to that is: use a masking agent to make the second metal ion “invisible” to the titrant.

Table 2. Complex-formation constants log(Kc) of different complexing agents with various metal ions. The higher the number in the table the higher the binding strength between metal ion and ligand. As an example: aluminum binds stronger to DCTA than to EDTA.

Masking agents

In general, masking agents are substances which have a higher complex-formation constant with the metal ion than the complexing agent. Metal ions which react with the masking agent can no longer be titrated, and therefore the metal ion of interest (which does not react with the masking agent) can be determined separately in the mixture using the complexing agent. Table 3 shows a small selection of common masking agents. There are many more masking agents available which can be used for the separation of metal ions.

Table 3. A selection of different masking agents.

Complexometric titration is still often carried out manually, as the color change is easily visible. However, this leads to several problems. My previous post “Why your titration results aren’t reproducible: The main error sources in manual titration” explains the many challenges of manual titration.

Subjective color perception and different readings lead to systematic errors, which can be prevented by choosing a proper electrode or using an optical sensor, which accurately indicates the color change. This optical sensor changes its signal depending on the amount of light reaching the photodetector. It is usually the easiest choice when switching from manual titration to automated titration, because usually it does not require any changes to your SOP.

Which wavelength is optimal for indication?

Figure 2. The Optrode from Metrohm can detect changes in absorbance at 470, 502, 520, 574, 590, 610, 640, and 660 nm.

If you choose to automate your complexometric titration and indicate the color change with a proper sensor, you should use the Optrode. This sensor offers eight different wavelengths enabling its use with many different indicators.

Perhaps you’re asking yourself “why do I need eight different wavelengths”? The answer is simple. This sensor monitors the absorbance of a certain wavelength in the solution. Each wavelength change is best detected when the light is strongly absorbed by the color of the sample solution, either before or after the endpoint is reached. For example, during a color change from blue to yellow, it is recommended to select the wavelength 574 nm (yellow) for the detection of the color change, as it is the complementary color of blue. For even more accuracy, the optimal wavelength can be chosen by knowing the UV/VIS spectra of the indicator before and after complexation.

Figure 3. Left: spectra of complexed (purple) and uncomplexed (blue) Eriochrome Black T are shown. Right: the difference in absorption of the two spectra is shown.

On the left side of Figure 3 is a graph with the spectra of complexed and uncomplexed Eriochrome Black T. The uncomplexed solution has a blue tint, whereas the complexed one is more violet. On the right, another graph shows the difference of both spectra. According to this graph, the maximum difference in absorption is obtained at a wavelength of 660 nm. Therefore, it is recommended to use this wavelength for the detection of the color change.

For more examples of indicators and their spectra, check out our free monograph “Complexometric (Chelometric) Titrations”.

Challenges when performing complexometric titrations

As mentioned in the introduction, complexometric titrations are a bit more demanding compared to other types of titration.

First, the indicators themselves are normally pH indicators, and most complexation reactions are pH-dependent as well. For example, the titration of iron(III) is performed in acidic conditions, while the complexation of calcium can only take place under alkaline conditions. This leads to the fact that the pH has to be maintained constantly while performing complexometric titrations. Otherwise, the color change might not be visible, indicated incorrectly, or the complexation might not take place.

Second, complexation reactions do not occur immediately, as with e.g. precipitation reactions. The reaction might take some time. As an example, the complexation reaction of aluminum with EDTA can take up to ten minutes to be completed. Therefore it is also important to keep this factor in mind.

Perhaps a back-titration needs to be performed in such a case to increase accuracy and precision. Please have a look at our blog post “What to consider during back-titration” for more information about this topic.


Complexometric titrations are easy to perform as long as some important points are kept in mind:

  • If more than one type of metal is present in your sample, you might need to consider a masking agent or a more suitable pH range.
  • Reaction duration of your complexation reaction might be long. In this case, a back-titration or titration at elevated temperatures might be a better option.
  • Make sure that you maintain a stable pH during your titration. This can be achieved by addition of an adequate buffer solution.
  • Switching from manual to automated titration will increase accuracy and prevent common systematic errors. When using an optical sensor, make sure that you choose the right wavelength for the detection of the endpoint.

For a general overview of complexometric titration, have a look at Metrohm Application Bulletin AB-101 – Complexometric titrations with the Cu ISE.

For more detailed information

Download our free monograph:

Complexometric (Chelatometric) Titrations

Post written by Iris Kalkman, Product Specialist Titration at Metrohm International Headquarters, Herisau, Switzerland.

What to consider during back-titration

What to consider during back-titration

Titrations can be classified in various ways: by their chemical reaction (e.g., acid-base titration or redox titration), the indication method (e.g., potentiometric titration or photometric titration), and last but not least by their titration principle (direct titration or indirect titration). In this article, I want to elaborate on a specific titration principle – the back-titration – which is also called «residual titration». Learn more about when it is used and how you should calculate results when using the back-titration principle.

What is a back-titration?

In contrast to direct titrations, where analyte A directly reacts with titrant T, back-titrations are a subcategory of indirect titrations. Indirect titrations are used when, for example, no suitable sensor is available or the reaction is too slow for a practical direct titration.

During a back-titration, an exact volume of reagent B is added to the analyte A. Reagent B is usually a common titrant itself. The amount of reagent B is chosen in such a way that an excess remains after its interaction with analyte A. This excess is then titrated with titrant T. The amount of analyte A can then be determined from the difference between the added amount of reagent B and the remaining excess of reagent B.

As with any titration, both involved reactions must be quantitative, and stoichiometric factors involved for both reactions must be known.

Figure 1. Reaction principle of a back-titration: Reagent B is added in excess to analyte A. After a defined waiting period which allows for the reaction between A and B, the excess of reagent B is titrated with titrant T.

When are back-titrations used?

Back titrations are mainly used in the following cases:

  • if the analyte is volatile (e.g., NH3) or an insoluble salt (e.g., Li2CO3)
  • if the reaction between analyte A and titrant T is too slow for a practical direct titration
  • if weak acid – weak base reactions are involved
  • when no suitable indication method is available for a direct titration

Typical examples are complexometric titrations, for example aluminum with EDTA. This direct titration is only feasible at elevated temperatures. However, adding EDTA in excess to aluminum and back-titrating the residual EDTA with copper sulfate allows a titration at room temperature. This is not only true for aluminum, but for other metals as well.

Learn which metals can be titrated directly, and for which a back-titration is more feasible in our free monograph on complexometric titration.

Other examples include the saponification value and iodine value for edible fats and oils. For the saponification value, ethanolic KOH is added in excess to the fat or oil. After a determined refluxing time to saponify the oil or fat, the remaining excess is back-titrated with hydrochloric acid. The process is similar for the iodine value, where the remaining excess of iodine chloride (Wijs-solution) is back-titrated with sodium thiosulfate.

For more information on the analysis of edible fats and oils, take a look at our corresponding free Application Bulletin AB-141.

How is a back-titration performed?

A back titration is performed according to the following general principle:

  1. Add reagent B in excess to analyte A.
  2. Allow reagent B to react with analyte A. This might require a certain waiting time or even refluxing (e.g., saponification value).
  3. Titration of remaining excess of reagent B with titrant T.

For the first step, it is important to precisely add the volume of reagent B. Therefore, it is important to use a buret for this addition (Fig. 2).

Figure 2. Example of a Titrator equipped with an additional buret for the addition of reagent B.

Furthermore, it is important that the exact molar amount of reagent B is known. This can be achieved in two ways. The first way is to carry out a blank determination in the same manner as the back-titration of the sample, however, omitting the sample. If reagent B is a common titrant (e.g., EDTA), it is also possible to carry out a standardization of reagent B before the back-titration.

In any case, as standardization of titrant T is required. This then gives us the following two general analysis procedures:

Back-titration with blank
  1. Titer determination of titrant T
  2. Blank determination (back-titration omitting sample)
  3. Back-titration of sample
Back-titration with standardizations
  1. Titer determination of titrant T
  2. Titer determination of reagent B
  3. Back-titration of sample

Be aware: since you are performing a back-titration, the blank volume will be larger than the equivalence point (EP) volume, unlike a blank in a direct titration. This is why the EP volume must be subtracted from the blank or the added volume of reagent B, respectively.

For more information on titrant standardization, please have a look at our blog entry on this topic.

How to calculate the result for a back-titration?

As with direct titrations, to calculate the result of a back-titration it is necessary to know the involved stoichiometric reactions, aside from the exact concentrations and the volumes. Depending on which analysis procedure described above is used, the calculation of the result is slightly different.

For a back-titration with a blank, use the following formula to obtain a result in mass-%:

VBlank:  Volume of the equivalence point from the blank determination in mL

VEP Volume at the equivalence point in mL

cTitrant:  Nominal titrant concentration in mol/L

fTitrant Titer factor of the titrant (unitless)

r:  Stoichiometric ratio (unitless)

MA Molecular weight of analyte A in g/mol

mSample Weight of sample in mg

100:  Conversion factor, to obtain the result in %

The stoichiometric ratio r considers both reactions, analyte A with reagent B and reagent B with titrant T. If the stoichiometric factor is always 1, such as for complexometric back-titrations or the saponification value, then the reaction ratio is also 1. However, if the stoichiometric factor for one reaction is not equal to 1, then the reaction ratio must be determined. The reaction ratio can be determined in the following manner:


  1. Reaction equation between A and B
  2. Reaction equation between B and T
  3. Multiplication of the two reaction quotients
Example 1

Reaction ratio: 

Example 2

Reaction ratio: 

Below is an actual example of lithium carbonate, which can be determined by back-titration using sulfuric acid and sodium hydroxide.

The lithium carbonate reacts in a 1:1 ratio with sulfuric acid. To determine the excess sulfuric acid, two moles of sodium hydroxide are required per mole of sulfuric acid, resulting in a 1:2 ratio. This gives a stoichiometric ratio r of 0.5 for this titration.

 For a back-titration with a standardization of reagent B, use the following formula to obtain a result in mass-%:

VB Added volume of the reagent B in mL

cB:  Nominal concentration of reagent B in mol/L

fB:  Titer factor of reagent B (unitless)

VEP:  Volume at the equivalence point in mL

cT:  Nominal concentration of titrant T in mol/L

fT Titer factor of the titrant T (unitless)

sBT Stoichiometric factor between reagent B and titrant T

sAB:  Stoichiometric factor between analyte A and reagent B

MA:  Molecular weight of analyte A in g/mol

mSample:  Weight of sample in mg

100:  Conversion factor, to obtain the result in %

Modern titrators are capable of automatically calculating the results of back-titrations. All information concerning the used variables (e.g., blank value) are stored together with the result for full traceability.

To summarize:

Back-titrations are not so different from regular titrations, and the same general principles apply. The following points are necessary for a back-titration: 

  • Know the stoichiometric reactions between your analyte and reagent B, as well as between reagent B and titrant T.
  • Know the exact concentration of your titrant T.
  • Know the exact concentration of your reagent B, or carry out a blank determination.
  • Use appropriate titration parameters depending on your analysis.

If you want to learn more about how you can improve your titration, have a look at our blog entry “How to transfer manual titration to autotitration”, where you can find practical tips about how to improve your titrations.

If you are unsure how to determine the exact concentration of your titrant T or reagent B by standardization, then take a look at our blog entry “What to consider when standardizing titrant”.

Post written by Lucia Meier, Product Specialist Titration at Metrohm International Headquarters, Herisau, Switzerland.

Titer determination in Karl Fischer Titration

Titer determination in Karl Fischer Titration

In a recent post, we have discussed the importance of titer determinations for potentiometric titrations.

Without a titer determination, you will not obtain correct results. The same applies for volumetric Karl Fischer (KF) titrations. In this blog post, I will cover the following topics (click to jump directly to each):

Why should I do titer determinations?

Why is a titer determination necessary? Well, the answer is quite simple. Without knowing the titer of a KF titrant, the water content of the sample cannot be calculated correctly. In Karl Fischer titration, the titer states how many mg of water can be titrated with one mL of titrant. Therefore, the KF titer has the unit «mg/mL».

You might say: “Now, ok, let’s determine the titer. That isn’t too much work and afterwards, I know the titer value and I don’t need to repeat the titer determination.

I agree this would be very nice. However, reality is somewhat different. You must carry out titer determinations on a regular basis. In closed bottles, KF titrants are very stable and the titer does not change appreciably. Once you open the bottle, the KF titrant starts to change significantly. Air will enter the bottle, and considering that 1 L of air contains several milligrams of water, you can imagine that this moisture has an influence on the titer. To prevent moist air from getting into the titrant, the bottle must be either tightly closed after use with the original cap, or should be protected with an absorber tube filled with a molecular sieve (0.3 nm).

Please be aware that temperature changes also have an influence on the titer. A temperature increase of the titrant by 1 °C leads to a titer decrease of approximately 0.1% due to volume expansion. Consider this, in case the temperature in your laboratory fluctuates during the working day.

Do not forget: if your titration system is stopped overnight, the reagent in the tubes and in the cylinder is affected and the titer is no longer equal to the titrant in the bottle. Therefore, I recommend first running a preparation step to flush all tubes before the first titration.

How often should I perform titer determinations?

This question is asked frequently, and unfortunately has no simple answer. In other words, I cannot recommend a single fixed interval for titer determinations. The frequency depends on various factors:

  • the type of reagent (two-component titrants are more stable than single-component titrants)
  • the tightness of the seals between the titration vessel and the titrant bottle
  • how accurate the water content in the sample must be determined

In the beginning, I would recommend performing a titer determination on a daily basis. After a few days, it will become apparent whether the titer remains stable or decreases. Then you can decide to adjust the interval between successive titer determinations.

What equipment do I need for a titer determination?

You need a fully equipped titrator for volumetric KF titration, as well as the KF reagents (titrant and solvent). Another prerequisite for accurate titer determinations is an analytical balance with a minimal resolution of 0.1 mg. Last but not least, you need a standard containing a known amount of water and some tools to add the standard to the titration vessel. These tools are discussed in the next section.

How to carry out a titer determination

Three different water standards are available for titer determinations. There are both liquid and solid standards available from various reagent suppliers. The third possibility is available in every laboratory: distilled water. Below, we will take a closer look at the individual handling of these three standards. For determination of appropriate sample sizes, you can download our free Application Bulletin AB-424, Titer determination in volumetric Karl Fischer titration.

1. Liquid water standard

For the addition of a liquid water standard, you need a syringe and a needle.

There are two possibilities to add liquid standard. One is to inject it with the tip of the needle placed above the reagent level. In this case, aspirate the last drop back into the syringe. Otherwise, it will be dropped off at the septum. The droplet is included in the sample weight, but the water content in the drop is not determined. This will lead to false results.

If the needle is long enough, you can immerse the tip in the reagent during the standard addition. In this case, there is no last droplet to consider, and you can pull the needle out of the titration vessel without any additional aspiration step.

Step-by-step – how to carry out a titer determination:

  1. Open the ampoule containing the standard as recommended by the manufacturer.
  2. Aspirate approximately 1 mL of the standard into the syringe.
  3. Remove the tip of the needle from the liquid and pull the plunger back to the maximum volume. Sway the syringe to rinse it with standard. Then eject the 1 mL of standard into the waste.
  4. Aspirate the remaining content of the ampoule into the needle.
  5. Remove any excess liquid from the outside of the needle with a paper tissue.
  6. Place the needle on a balance, and tare the balance.
  7. Then, start the determination and inject a suitable amount of standard through the septum into the titration vessel. Please take care that the standard is injected into the reagent and not at the electrode or the wall of the titration vessel. This leads to unreproducible results.
  8. After injecting the standard, place the syringe again on the balance.
  9. Enter the sample weight in the software.
2. Solid water standard

It is not possible to add the solid water standard with a syringe. For this, different tools are required. Here, examples are shown of a weighing boat and the Metrohm OMNIS spoon for paste.

Place the weighing boat on the balance, then tare the balance. Weigh in an appropriate amount of the solid standard, and tare the balance again. Start the titration, quickly remove the stopper with septum, add the solid standard and quickly replace the stopper. When adding the standard, take care that no standard sticks to the electrode or the walls of the titration vessel. In case that happens, gently swirl the titration vessel to wash down the standard. After the addition of the standard, place the weighing boat on the balance again and enter the sample weight in the software.

3. Pure water

Pure water can be added to the titration vessel either by weight or by volume.

For a titer determination with pure water, only a few drops are required. Such small volumes can be difficult to add precisely, and results strongly depend on the user. Moreover, addition by weight requires a balance capable of weighing a few milligrams. I personally prefer using water standards, and suggest that you use them as well.

By weight

Fill a small syringe (~1 mL) with water. Due to the very small amounts of pure water added for the titer determination, I recommend using a very thin needle to more accurately add small volumes. After filling the syringe, place it on a balance and tare the balance. Then start the titration, and inject an appropriate amount of water through the septum into the titration vessel. Aspirate the last droplet back into the syringe. Remove the needle, place the syringe on the balance again, and enter the sample weight in the software.

By volume

Fill a microliter syringe with an appropriate volume of water. Make sure there are no air bubbles in the syringe, as they will falsify the result. Begin the titration and inject the syringe contents through the septum into the titration vessel. Enter the added sample size in the software.

Acceptable results

During trainings, I am often asked if the obtained result is acceptable. I recommend carrying out a threefold titer determination. Ideally, the relative standard deviation of those three determinations is smaller than 0.3%.

How long can the reagent be used?

As long as you carry out regular titer determinations, the titer change will be considered in the calculation, and the results will be correct. Just keep in mind: the lower the titer, the larger the volume needed for the determination.

I hope I was able to convince you that titer determination is essential to obtain correct results in volumetric Karl Fischer titration, and that it is not that difficult to perform.

In case you still have unanswered questions, please download Metrohm Application Bulletin AB-424 to get additional information, tips, and tricks on performing titer determination.

Still have questions?

Check out our Application Bulletin: Titer determination in volumetric Karl Fischer titration.

Post written by Michael Margreth, Sr. Product Specialist Titration (Karl Fischer Titration) at Metrohm International Headquarters, Herisau, Switzerland.

FAQ: All about pH calibration

FAQ: All about pH calibration

In a recent blog post, we discussed how to avoid the most common mistakes in pH measurement:

Here, I want to discuss in a bit more detail how you can correctly calibrate your pH electrode and what you have to consider to obtain the best measurement results afterwards by answering some of your most frequently asked questions.

Let’s get right into it! If you want to jump directly to a question, click on one of these links:

When do I have to calibrate my pH electrode?

Performing regular calibration of your pH electrode is important to get accurate results. The pH electrode can change its properties (e.g., by contamination of the reference electrolyte) which then leads to deviating calibration results. If you do not freshly calibrate your electrode, you obtain precise but inaccurate results of your pH measurement. Therefore, the more accurate the results need to be, the more often you have to calibrate.

Depending on the number of measurements and the sample matrix, I recommend calibrating at least weekly. If the sensor is used often, or if the sample matrix contaminates the sensor, then you should calibrate daily or even more frequently. If the pH electrode is not used often, then always calibrate it prior to a new set of measurements. Also make sure that you always calibrate your sensor if you have received a new one, or after maintenance.

How do I select the correct buffers?

Any time you perform a calibration, it is essential that appropriate buffers are used.

First, you have to select the pH values that you would like to use for calibration. Use at least two different buffers, though it is even better to perform a multi-point calibration. Furthermore, make sure that the pH of your sample is of course within the calibration range! For example, if you want to measure a sample at pH 9, your calibration should not be within pH 4 and 7, but at least up to pH 10. In the graph, you can see that errors become large especially outside of the calibrated range.


In addition, the quality of your buffer solutions is essential, as your calibration can only be as good as the buffers used. Never use expired calibration buffers! If the buffer solutions are meant for single use only, do not reuse them. Microbial growth in the buffer can alter its properties quickly. Always mark your buffer solution bottle with the opening date, and especially ensure that alkaline buffers above pH 9 are not used for too long (< 1 month), as CO2 will enter and change the pH value slowly. Moreover, never pour the standards back into the bottle, as they might have been contaminated!

How should I set up my instrument?

Not only is the right choice of calibration buffers essential, it is also very important that you set up your instrument correctly. It’s not only the pH measurement that is sensitive to temperature, pH buffers are as well, and the measured pH value can change with the temperature. This temperature dependency of the pH buffers is usually depicted with buffer tables.

Most instruments already include buffer table templates from various buffer manufacturers. Several tables are available that contain the information about the exact pH value at various temperatures for a certain buffer. These tables are unique for each manufacturer.

The instrument will then select the correct pH value according to the measured temperature. If your buffer is not available with a table, make sure you enter the correct pH value or use a custom buffer table to store the information. As seen here, a temperature change of only 5 °C can have an influence of > 0.04 pH units.

Therefore selecting the manufacturer of your buffer solutions within the calibration parameters is important to obtain an accurate calibration.

Why do I have to measure the temperature?

You might wonder why you should always measure the temperature when you perform pH measurements. Most pH electrodes used for pH measurement have a temperature sensor directly included. This is because the pH value is temperature-dependent. Let me digress for a moment:

In 1889 the Nernst equation was established, describing the potential of an electrochemical cell as a function of concentrations of the ions taking part in the reaction. The relationship between potential and pH [-log(H+)] is given by the formula:

Where U is the measured potential, U0 the standard electrode potential, R the universal gas constant, T the absolute temperature, n the charge (here, +1), and F the Faraday constant. The central term

is called the Nernst slope and gives the mV change per pH unit. As you can see, this term includes the absolute temperature, meaning the slope of your calibration is temperature-dependent. The higher the temperature, the steeper the slope.

Modern pH meters will correct the slope for this temperature variation when the calibration and measurement are not performed at the same temperature.

However, there is an effect that cannot be corrected by the instrument: samples do not have the same pH value at different temperatures! This can already be seen when looking at the example buffer table above. This temperature dependence is different for each sample. Therefore: Always measure your samples at the same temperature if you want to compare their pH values. Also be sure to carry out the pH calibration at the same temperature at which you are measuring your samples. This will greatly reduce the error of your pH measurement.

How do I perform my calibration?

First, prepare your electrode for calibration: open the refilling plug to ensure proper electrolyte outflow, rinse the electrode well with deionized water, and place the sensor into the buffer solution. An important note: both glass membrane and diaphragm must be covered with the buffer solution.

Additionally, assure that you position the electrode in the beaker for maximum reproducibility, especially when stirring. Never place the sensor haphazardly into the beaker where the glass membrane is touching the glass of the beaker; this can cause scratches on the glass membrane, leading to erroneous results.

Do you even have to stir at all? No, you do not! However, as there can be effects on the measured potential depending on the stirring speed, make sure that you always choose the same stirring speed among all buffer solutions, but also for calibration and subsequent measurements. Also, make sure that you do not stir so strongly that a vortex is formed, and avoid any splashing of the solution.

Now, you can start your calibration. Most instruments decide autonomously when the reading is stable by monitoring the drift (mV change per minute). Sometimes it is also possible to stop the buffer measurement after a fixed time interval. However, this requires enough time for the electrode to reach a stable potential as otherwise the calibration will be biased.

Between the buffer solutions, the electrode is rinsed with deionized water. Never dry the electrode afterwards with a tissue, paper towel, or a cloth! This can lead to electrostatic charges on the electrode or even scratches on the glass membrane. Both will lead to longer response times, and in the latter case – to irreversible damage.

What do «slope» and «offset» mean?

Once you’ve finished the calibration, the instrument will display the calibration result. The calibration results usually consists of a slope and offset value. In this section, I want to explain their meaning.

The slope is normally given in % and is calculated from

the measured slope of the calibration divided by the theoretical slope (Nernst Slope) which is equal to 59.16 mV per pH unit at 25 °C. This is done in order to be able to correct the slope for temperature differences between calibration and measurement.

The second parameter that is evaluated is the pH(0), which is the pH value measured at 0 mV. In an ideal case, 0 mV corresponds to a pH value of 7. However, reality usually does not stick to the ideal case. Sometimes, the offset potential (Uoff) is also given, which corresponds to the potential at pH 7.

After calibration, always check the slope and the pH(0). The slope should fall between 95 and 103% and the pH(0) should lie between pH 6.8 and 7.2 (Uoff within ± 15 mV).

If you would like to get more information about your pH electrode, you can either perform a pH electrode test, which is implemented in some instruments from Metrohm, or a test according to Metrohm application bulletin AB-188.

If the pH(0) is outside the recommended range, this can be caused by a contaminated electrolyte or your probe may require a general cleaning.

If the slope is lower than 95%, this can be related to expired or contaminated buffer solutions. However, old and slow electrodes can also exhibit slopes outside of the limits. Therefore, always use fresh buffers.

If the slope is still too low even with fresh buffer, or the pH(0) is outside the recommended range after cleaning and subsequent reconditioning, it is time to replace the electrode.

To summarize

  • Select the calibration frequency and buffer types according to your samples.
  • Make sure that you always use fresh, high quality, and certified buffers as your calibration can only be as good as your buffers.
  • Set up your instrument correctly and use a fixed electrode position for the best reproducibility.
  • Measure the temperature for calibration and subsequent measurement. Moreover, only compare pH values of samples measured at the same temperature.
  • After calibration, check that your data for slope and pH(0) are within the optimal limits.

Would you like to learn even more about pH measurement? Come to our website and check out our informative webinars!

Metrohm webinars

Available below for pH measurement

Post written by Dr. Sabrina Gschwind, Jr. PM Titration (Sensors) at Metrohm International Headquarters, Herisau, Switzerland.

Why consider automation – even for simple titrations

Why consider automation – even for simple titrations

If you are reading this blog post, you are most likely already familiar with the general principles of potentiometric titration. Although chromatographic and spectroscopic methods are preferred in many labs, titration is still “the” method for analysis of all kinds of sample types. Titration stands apart from other techniques because it is an absolute method (also known as a primary method). Whenever the analyte reacts in a known stoichiometric way with another reagent, titration is the method of choice, not only for official norms and standards.

Nowadays, titration is far more modern than it was back when I was a student. At that time we still used glass burets and color indicators, and suffered from inconsistent results. Although the automatic addition of the titrant and the recognition of the equivalence point are now performed by the titrator itself in most labs, there are still many manual steps that can go wrong and lead to unreliable results.

If the used titrator is a stand-alone type, the analysis becomes a full-time job for the lab technician. Not only must the sample be prepared, the titration itself has to be started after the sensor and buret tip have been placed in the sample solution. If using a titrator, the addition of the titrant as well as evaluation and calculation of the results will be done automatically. However, cleaning after each finished determination and preparation for the next sample still remains the task of the lab technician. In many cases, the titration does not take much longer than 3–5 minutes. Due to this short period, there are not many other tasks which can be completed by the technician during the analysis time.

Using a fully automated titration system results in not only more efficient analyses, but achieves better and even more reproducible ones at the same time. Let’s find out how!

Save valuable time

Time savings is one of the biggest benefits of using automation. To get a better idea about the general amount of time that can be saved, have a closer look at this diagram. You can already see how many steps can be done by an automated titration system, leaving analysts more time for other tasks.

A proper analysis starts with the correct liquid handling.

Sample determination in titration can consist of several manual steps beyond the addition of the titrant. Depending on the type of sample and analysis, different kinds of sample preparation steps are required. The most common ones are the manner of sampling itself, dilution, auxiliary reagent addition, pH, or temperature adjustment.

Taking the correct amount of representative sample can already be quite a demanding task. For many applications, the sample is weighed if it is solid (e.g., powder or tablets), but this does not work for all sample types. Liquids are normally measured using measuring cylinders or pipets. These are very accurate and helpful tools if the user knows how to handle them correctly.

As long as the same person is performing the sampling, the results should be very reproducible, but in most labs this is not the case. Usually more than one person is responsible for the same analysis due to shift work, which can result in differing or less reproducible results.

With fully automated volumetric sampling, the only thing you need to care about is making sure enough sample is placed in the sample beaker! The connected dosing device is able to pipet the requested sample amount very accurately to the titration cell. The big advantages of using an automated pipetting system is its flexibility (e.g., even 3.75 mL can be pipetted fully automatically). Due to its independence of the user, the sampling and the results become much more reproducible.

Dilution / Addition of auxiliary reagents

In many cases, the sample amount needed for the analysis is not sufficient enough to put the sensor directly in and begin analysis. Often deionized water (or another suitable solvent) is added to reach a sufficient volume for the sensors to be placed in.  As titration is an absolute method, the amount of added solvent has no impact on the titration results, as long as the solvent does not react in the same way as the sample does with the titrant. 

A typical example is the solvents used for TAN/ TBN analysis in the petrochemical industry. Here, it is important to measure the amount of added solvent accurately and make sure to determine the blank value in advance. 

There are quite a few other applications where an accurate amount of reagent must be added: e.g., to start or stop a reaction, preparing back titrations, or for general pH adjustments before the final titration can take place.

For these tasks, measuring cylinders and pipets are normally used, but this is often tedious and can lead to mistakes, especially if many samples have to be analyzed. These days, many stand-alone titrators already offer the possibility to automatically and accurately add reagents, including the titrant. Repetitive (and annoying!) manual preparation steps therefore no longer occupy the lab technician.

Since reagent addition is part of the sample determination procedure, these added volumes can be documented much easier and more accurately, meaning less trouble when it comes to the analysis procedure traceability.

So, how good can such a buret be? Metrohm offers burets with a resolution of 100,000 pulses where even minute volumes can be dosed with extreme accuracy. For example, when using a 50 mL cylinder unit we are speaking about 0.5 µL per pulse.


The best liquid handling is not good enough if the sensor measures incorrectly.

The heart of each titration or measurement is the chosen sensor. It is especially important in potentiometric titrations that both measuring and reference electrodes are properly cleaned, and if necessary, also conditioned between analyses. Otherwise, false equivalence points might be indicated, or instable curves will be shown, which leads to inaccurate and unreproducible results. Therefore, proper sensor maintenance is also important. Although many lab technicians are trained about handling the electrode correctly, some things may be forgotten after some time and this is where the trouble starts.

Quite often it takes some time before realizing that the wrong electrode treatment is the reason for the differing results. Several issues could be cleared up due to either the absence of electrode cleaning/conditioning or perhaps the cleaning step was not long enough. Similar to the titration itself, the manual cleaning steps also depend on the user performing this task. With an automated setup, this can be easily avoided as the electrode is treated in the exact same way for each determination. Additionally, automating the titration guarantees that the sensor is always properly stored, even if the sample series finishes in the middle of the night when no one is in the lab to do this.

In the blog entry «Avoiding the most common mistakes in pH measurement» you will find more useful hints for correct sensor handling in general.

 Last but not least, a well-treated electrode not only gives you outstanding results, but also lasts much longer and reduces the costs of consumables.

Automation rocks – even for simple titration applications.

Here I have explained several reasons to consider automation even for simple titration applications. By including as many sample preparation steps as possible directly into the analysis run, this guarantees that each sample is treated exactly the same way, along with a better documentation process. Not only is there a reduction in handling errors during sampling, liquid handling, and electrode treatment, but as a result of these the reproducibility will be increased. On top of this, lab technicians are no longer occupied with annoying routine sample preparation/determinations, but have more time for reporting tasks or other analyses which are not automated – i.e. the laboratory throughput increases.

Post written by Heike Risse, PM Titration (Automation) at Metrohm International Headquarters, Herisau, Switzerland.

Upgrade your lab skills online

Upgrade your lab skills online

At the moment, times are strange, as many people are kept home to keep each other safe and healthy. Some of you are still able to work in your office or laboratories, but others are trying to find constructive ways to keep focused and stay connected.

During this time, one way to keep your skills sharp, or even to learn new ones, is by watching informative webinars. Level up in your laboratory expertise!

Below, we have a selection of some excellent free webinars from Metrohm to keep you on top of your game – no matter which technique you use. Application examples, practical information on handling, care, and troubleshooting, and more – our webinars provide very useful information dealing with various techniques and industries.

We offer several on-demand webinars about subjects such as the fundamentals of titration, troubleshooting, and the synergy between titration and near-infrared spectroscopy (also see our related blog post on this topic).

This important segment of titration is especially important for accurate moisture determinations.

On-demand webinars available include fundamentals and troubleshooting, as well as others for more in-depth knowledge.

NIRS is a fast, nondestructive, reagent-free technique, used in several markets (e.g., pharmaceuticals, petrochemicals, polymers, and personal care).

We have many interesting webinars not only focused on these industries, but also for quality control, process analytical technology (PAT),  and about the combination with the primary method of titration (also see our related blog post on this topic).

Raman spectroscopy is a handy tool for quick, reagent-free identification of raw materials, illicit substances, and hazardous chemicals – even from a distance.

Watch this webinar to learn how accurate, reliable, and portable screening tools can help to detect substandard and falsified medical products.

Aside from providing information about how Metrohm ion chromatography (IC) can be used for multiple applications in different markets, we also offer free webinars about sample preparation and automatic calibration to help save you valuable time when you’re back in the lab!

The measurement of pH is one of the most commonly performed determinations in chemical analysis. Why not learn some of the basics, or perhaps some troubleshooting techniques with our free webinars to impress your colleagues? If you are looking to avoid the most common mistakes in pH measurement, be sure to check out our blog post as well.

Our electrochemistry webinars cover a variety of topics to enhance your knowledge in this area. From corrosion analysis to electrocatalysis research, we have you covered.

If you’re more interested in screen-printed electrodes (SPEs) and biosensing applications, we have something for you, too!

I hope you find these webinars informative. If you’re interested in further educational opportunities from Metrohm, check out the Metrohm Academy. Stay safe, stay healthy, and always keep learning!

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.