Select Page
Forewarned is Forearmed: Error and risk minimization in process analysis – Part 3

Forewarned is Forearmed: Error and risk minimization in process analysis – Part 3

In the course of life, each of us learns to trust our gut feelings or our experiences to avoid situations that seem dangerous or risky. You quite literally sense potential dangers with an uneasy feeling. Who hasn’t painfully learned that touching a hot stove top isn’t a good idea? Or who voluntarily goes outside during a tornado?

While humans can rely on their intuition and learned patterns to avoid dangers or use protective strategies, this is far more complicated with electronic systems or machines. All components of a system must be in a permanently safe state. Failures and malfunctions of individual components can have devastating consequences for production processes and the safety of the operators.

An example of this is the Seveso disaster in 1976, in which highly toxic dioxin TCDD escaped as a result of an uncontrolled reaction, and sustainably poisoned flora and fauna. With regard to other major chemical accidents, the European Seveso III Directive then came into force in 2012 to control major accident hazards to prevent major accidents.

Have you read Part 1 and Part 2 of our «Advantages of PAT (Process Analytical Technology)» series? If not, find them here!

Recognize, master, and avoid errors

Process engineering systems that are operated continuously contain countless components that can wear out or fail during their life cycle. However, if the measuring, control, or regulating circuit is affected, failures can cause immense damage. Under no circumstances should humans nor the environment be exposed to any kind of danger. For this reason, the functional safety of the components must be guaranteed, and their risk and hazard potential must be analyzed in detail.

The service life of mechanical components can be evaluated by observing mechanical wear and tear. However, the aging behavior of electronic components is difficult to assess. A unit of measure that makes risk reduction and thus functional safety quantifiable is the so-called «Safety Integrity Level» (SIL). 

The following procedure is followed:

  1.   Risk analysis
  2.   Realization of risk reduction
  3.   Evidence that the realized risk reduction corresponds at least to the required risk reduction

«Process analysis systems are part of the entire safety cycle of a manufacturing plant and therefore only one component whose risk of malfunctions and failures must be considered in an assessment.»

Risk assessmentA process is considered safe if the current risk has been reduced below the level of the tolerable risk. If safety is ensured by technical measures, one speaks of functional safety.

Significance for process analysis systems

Errors can happen anywhere, and can never be completely excluded. To minimize possible errors, it is therefore necessary to estimate the risk of occurrence and the damage to be expected from it as part of a risk analysis. A distinction must be made here between systematic and random errors.

Systematic errors are potentially avoidable and are caused, for example, by software errors or configuration deficiencies. Accordingly, they already exist during or prior to commissioning.

In contrast, random errors are potentially difficult to avoid because they occur arbitrarily. Nevertheless, the error rate or failure probability can be determined statistically and experimentally.

Random errors usually result from the hardware and occur during operation. Ultimately, systematic errors should be avoided, and random errors should be mastered to ensure trouble-free functionality.

Process analysis systems are the link between manual laboratory analysis and the industrial process. In applications where continuous and fully automatic monitoring of critical parameters is required, process analyzers are indispensable. Due to the different analysis conditions in the laboratory and directly in the process, there are some challenges when transferring the measurement technology from the lab to the process. The decisive factors are the working and environmental conditions (e.g., high temperatures, corrosive atmospheres, moisture, dust, or potentially explosive environments) which the process analyzers have to meet regarding their design, construction materials, and reliability of the components. The analyzer automatically and continuously transmits system and diagnostic data to prevent hardware or software components from failing through preventive measures. This significantly reduces the chance of random errors occurring.

General process analyzer setup

a) Analyzer Setup

Process analyzers have been specially developed for use in harsh and aggressive industrial environments. The IP66 protected housing is divided into two parts, and consists of separate wet and electronic parts. The electronics part contains all components relevant to control and operate the process analyzer. Modular components like burettes, valves, pumps, sampling systems, titration vessels, and electrodes can be found in the analyzer wet part. Representative samples can thus be taken from the process measuring point several meters away. The analysis procedure, the methods to be used, and method calculations are freely programmable.

A touchscreen with intuitive menu navigation allows easy operation, so that production processes can be optimized at any time. The course of the measurement is graphically represented and documented over the entire determination, so that the analysis process is completely controlled. The measurement results can be generated 24/7 and allow close and fully automatic monitoring of the process. Limits, alarms, or results are reliably transferred to the process control system.

When operating the analyzer, there is a risk that software errors can lead to failures. In order to recognize this with foresight, the system delivers self-diagnostic procedures as soon as it is powered on and also during operation. This includes, e.g., checking pumps and burettes, checking for leaks, or checking the communication between the I/O controller, the human interface, and the respective analysis module.

b) Sensors

The central component of a process analyzer is the measurement technique in use. In the case of sensors or electrodes, there are several requirements such as chemical resistance, ease of maintenance, robustness, or precision which they must meet. The safety-related risk arises from the possibility if measurement sensors fail due to aging, or if they become damaged and subsequently deliver incorrect measurement results.

Failure of the electrode, contamination, or damage must be reported immediately. With online analysis systems, the analysis is performed in an external measuring cell. In addition, recurring calibration and conditioning routines are predefined and are performed automatically. The status of the electrode is continuously monitored by the system.

Between measurements, the electrode is immersed in a membrane-friendly storage solution that prevents drying out and at the same time regenerates the swelling layer. The electrode is therefore always ready for use and does not have to be removed from the process for maintenance. This enables reliable process control even under harsh industrial conditions.

c) Analysis

Process analyzers must be able to handle samples for analysis over a wide concentration range (from % down to trace levels) without causing carry-over or cross-sensitivity issues. In many cases, different samples from several measuring points are determined in parallel in one system using different analysis techniques. The sample preparation (e.g., filtering, diluting, or wet chemical digestion) must be just as reliable and smooth as the fully automatic transfer of results to the process control system so that a quick response is possible.

Potential dangers for the entire system can be caused by incorrect measurement results. In order to minimize the risk, a detector is used to notify the system of the presence of sample in the vessel. The testing of the initial potential of the analysis or titration curves / color development in photometric measurements are diagnostic data that are continuously recorded and interpreted. Results can be verified by reference analysis or their plausibility can be clarified using standard and check solutions.

Detect errors before they arise

The risk assessment procedures that are carried out in the context of a SIL classification for process engineering plants are ultimately based on mathematical calculations. However, in the 24/7 operation of a plant, random errors can never be completely excluded. Residual risk always remains. Therefore, the importance of preventive maintenance activities is growing immensely in order to avoid hardware and software failures during operation.

A regular check of the process analyzer and its diagnostic data is the basic requirement for permanent, trouble-free operation. With tailor-made maintenance and service concepts, the analyzer is supported by certified service engineers over the entire life cycle. Regular maintenance plans, application support, calibration, or performance certificates, repairs, and original spare parts as well as proper commissioning are just a few examples.

Advantages of preventive maintenance from Metrohm Process Analytics

  • Preservation of your investment
  • Minimized risk of failure
  • Reliable measurement results
  • Calculable costs
  • Original spare parts
  • Fast repair
  • Remote Support

In addition, transparent communication between the process control system and the analyzer is also relevant in the context of digitalization. The collection of performance data from the analyzer to assess the state of the control system is only one component. The continuous monitoring of relevant system components enables conclusions to be drawn about any necessary maintenance work, which ideally should be carried out at regular intervals. The question arises as to how the collected data is interpreted and how quickly it is necessary to intervene. Software care packages help to test the software according to the manufacturer’s specifications, to perform data backup and software maintenance.

«Remote support is particularly important in times when you cannot always be on site.»

In real emergency situations in which rapid error analysis is required, manufacturers can easily support the operator remotely using remote maintenance solutions. The system availability is increased, expensive failures and downtimes are avoided, and the optimal performance of the analyzer is ensured.

Read what our customers have to say!

We have supported customers even in the most unlikely of places⁠—from the production floor to the desert and even on active ships!

Post written by Dr. Kerstin Dreblow, Product Manager Wet Chemical Process Analyzers, Deutsche Metrohm Prozessanalytik (Germany).

The role of process automation in an interconnected world – Part 2

The role of process automation in an interconnected world – Part 2

The following scenario sounds like a fictional dystopian narrative, but it is a lived reality. A catastrophe, much like the current COVID-19 crisis, is dramatically impacting society. The normality, as was known before, has suddenly changed: streets are swept empty, shops are closed, and manufacturing is reduced or at a complete standstill. But what happens to safety-related systems, e.g. in the pharmaceutical or food industry, which must not stand still and are designed in such a way that they cannot fail? How can the risk of breakdowns and downtimes be minimized? Or in the event of failure, how can the damage to people and the environment be limited or, in general, the operational sequence maintained?

Digitalization: curse or blessing? 

When considering process engineering plants, one is repeatedly confronted with buzzwords such as «Industry 4.0», «digitalization», «digital transformation», «IoT», «smart manufacturing», etc. The topic is often discussed controversially and often it is about an either-or dichotomy: either man or the machine and the associated fears. No matter what name you give to digitalization, each term here has one thing in common: intelligently networking separate locations and processes in industrial production using modern information and communication technologies. Process automation is a small but important building block that needs attention. Data can only be consistently recorded, forwarded, and reproduced with robust and reliable measurement technology.

For some time already, topics including sensors, automation, and process control have been discussed in the process industry (PAT) with the aim of reducing downtimes and optimizing the use of resources. However, it is not just about the pure collection of data, but also about their meaningful interpretation and integration into the QM system. Only a consequent assessment and evaluation can lead to a significant increase in efficiency and optimization.

This represents a real opportunity to maintain production processes with reduced manpower in times of crisis. Relevant analyses are automatically and fully transferred to the process. This enables high availability and rapid intervention, as well as the assurance of high quality requirements for both process security and process optimization. In addition, online monitoring of all system components and preventive maintenance activities effectively counteracts a failure.

Digitally networked production plants

Even though digitalization is relatively well-established in the private sector under the catchphrase «smart home», in many production areas the topic is still very much in its infancy. In order to intelligently network different processes, high demands are made. Process analysis systems make a major contribution to the analysis of critical parameters. Forwarding the data to the control room is crucial for process control and optimization. In order to correspond to the state-of-the-art, process analysis systems must meet the following requirements:

Transparent communication / operational maintenance

Processes must be continuously monitored and plant safety guaranteed. Downtimes are associated with high expenditure and costs and therefore cannot be tolerated. In order to effectively minimize the risk of failures, device-specific diagnostic data must be continuously transmitted as part of the self-check, or failures must be prevented with the help of preventive maintenance activities. Ideally, the response must be quick, and faults remedied without having to shut down the system (even remotely).

Future-proof automation

If you consider how many years (or even decades) process plants are in operation, it is self-explanatory that extensions and optimizations must be possible within their lifetime. This includes both the implementation of state-of-the-art analyzers and the communication between the systems.

Redundant systems

In order to prevent faults from endangering the entire system operation, redundancy concepts are generally used.

Practical example: Smart concepts for fermentation processes

Fermenters or bioreactors are used in a wide variety of industries to cultivate microorganisms or cells. Bacteria, yeasts, mammalian cells, or their components serve as important active ingredients in pharmaeuticals or as basic chemicals in the chemical industry. In addition, there are also degradation processes in wastewater treatment assisted by using bioreactors. Brewing kettles in beer production can also be considered as a kind of bioreactor. In order to meet the high requirements for a corresponding product yield and the maintenance of the ideal conditions for proper metabolism, critical parameters have to be checked closely, and often.

The conditions must be optimally adapted to those of the organism’s natural habitat. In addition to the pH value and temperature, this also includes the composition of the matrix, the turbidity, or the content of O2 and CO2. The creation of optimal environmental conditions is crucial for a successful cultivation of the organisms. The smallest deviations have devastating consequences for their survival, and can cause significant economic damage.

As a rule, many of the parameters mentioned are measured directly in the medium using inline probes and sensors. However, their application has a major disadvantage. Mechanical loads (e.g., glass breakage) or solids can lead to rapid material wear and contaminated batches, resulting in high operational costs. With the advent of ​​smart technologies, online analysis systems and maintenance-free sensors have become indispensable to ensure the survival of the microorganisms. In this way, reliably measured values ​​are delivered around the clock, and it is ensured that these are transferred directly to all common process control systems or integrated into existing QM systems.

Rather than manual offline measurement in a separate laboratory, the analysis is moved to an external measuring cell. The sample stream is fed to the analysis system by suction with peristaltic pumps or bypass lines. Online analysis not only enables the possibility of 24/7 operation and thus a close control of the critical parameters, but also the combination of different analysis methods and the determination of further parameters. This means that several parameters as well as multiple measuring points can be monitored with one system.

The heart of the analysis systems is the intelligent sensor technology, whose robustness is crucial for the reliable generation of measured values.

pH measurement as a vital key parameter in bioreactors

Knowledge of the exact pH value is crucial for the product yield, especially in fermentation processes. The activity of the organism and its metabolism are directly dependent on the pH value. The ideal conditions for optimal cell growth and proper metabolism are within a limited pH tolerance range, which must be continuously monitored and adjusted with the help of highly accurate sensors.

However, the exact measurement of the pH value is subject to a number of chemical, physical, and mechanical influencing factors, which means that the determination with conventional inline sensors is often too imprecise and can lead to expensive failures for users. For example, compliance with hygiene measures is of fundamental importance in the pharmaceutical and food industries. Pipelines in the production are cleaned with solutions at elevated temperatures. Fixed sensors that are exposed to these solutions see detrimental effects: significantly reduced lifespan, sensitivity, and accuracy.

Intelligent and maintenance-free pH electrodes

Glass electrodes are most commonly used for pH measurement because they are still by far the most resistant, versatile, and reliable solution. However, in many cases changes due to aging processes or contamination in the diaphragm remain undetected. Glass breakage also poses a high risk, because it may result in the entire production batch being discarded.

The aging of the pH-sensitive glass relates to the change in the hydration layer, which becomes thicker as time goes on. The consequence is a sluggish response, drift effects, or a decrease in slope. In this case, calibration or adjustment with suitable buffer solutions is necessary. Especially if there are no empirical values ​​available, short intervals are recommended, which significantly increase the effort for maintenance work.

With online process analyzers, the measurement is transferred from the process to an external measuring cell. This enables a long-lasting pH measurement to be achieved with an accuracy that is not possible with classic inline probes.

In many process solutions, measurement with process sensors takes place directly in the medium. This inevitably means that the calibration and maintenance of electrodes is particularly challenging in places that are difficult to access, leading to expensive maintenance work and downtimes. Regular calibration of the electrodes is recommended, especially when used under extreme conditions or on the edge of the defined specifications.

If the measurement is carried out with online process analyzers, then calibration, adjustment and cleaning are carried out fully automatically. The system continuously monitors the condition of the electrode. Between measurements, the electrode is immersed in a membrane-friendly storage solution that avoids drying out, and at the same time prevents the hydration layer from swelling further as it does not contain alkali ions. The electrode is always ready for use and does not have to be removed from the process for maintenance work.

The 2026 pH Analyzer from Metrohm Process Analytics is a fully automatic analysis system, e.g., for determining the pH value as an individual process parameter.

Maintenance and digitalization

In addition to the automatic monitoring of critical process parameters, transparent communication between the system and the analyzer also plays a decisive role in terms of maintenance measures. The collection of vital data from the analyzer to assess the state of the system is only one component. The continuous monitoring of relevant system components enables conclusions to be drawn about any necessary maintenance work. For example, routine checks on the condition of the electrodes (slope / zero point check, possibly automatic calibration) are carried out regularly during the analysis process. Based on the data, calibration and cleaning processes are performed fully automatically, which allow robust measurement even at measuring points that are difficult to access or in aggressive process media. This means that the operator is outside the danger zone, which contributes to increased safety.

Summary

The linking of production processes with digital technology holds a particularly large potential and contributes to the economic security of companies. In addition, the pressure is growing steadily for companies to face the demands of digitalization in production. As an example, in the area of ​​fermentation processes, the survival of the microorganisms is ensured by closely monitoring relevant parameters. Intelligent systems increase the degree of automation and can make the process along the entire value chain more efficient.

Find out in the next installment how functional safety concepts help to act before a worst case scenario comes true where errors occur and systems fail.

Want to learn more about the history of process analysis technology at Metrohm? Check out our previous blog posts:

Read what our customers have to say!

We have supported customers even in the most unlikely of places⁠—from the production floor to the desert and even on active ships!

Post written by Dr. Kerstin Dreblow, Product Manager Wet Chemical Process Analyzers, Deutsche Metrohm Prozessanalytik (Germany).

Save money by using automated titration systems

Save money by using automated titration systems

Perhaps you read my last blog entry: «Why consider automation – even for simple titrations» and liked the idea of disengaging yourself from the tedious, repetitive, and exhausting manual routine lab work by automating analyses and increasing the accuracy and reproducibility of your results at the same time.

Titration is known to be a bargain analytical method, as a glass buret or even a simple stand-alone titrator are quite inexpensive in comparison with other techniques such as spectroscopy or chromatography. In combination with the short determination time and results based on a known stoichiometry, titration is well-accepted in laboratories worldwide as a primary method.

Nevertheless, the increasing sample throughput in the last decades shows more and more why it is worth it to automate lab analysis. On many occasions, I had discussions with lab managers or purchasing agents who had doubts about buying an automation system for the «cheap» titration technique. These concerns are understandable, especially when adding automation to the titrator can cost the same as the titration installation, or even more. However, consider not only the costs for such an upgrade but also the many benefits.

I will now explain how the usage of a fully automated titration system can result in various savings.

 

Save valuable time

Time savings is one of the biggest benefits when using walk-away automation in the lab.

After preparing the sample and entering the required sample data into the controlling device, the system can run unattended for several hours or even days. During this time, lab technicians can spend their valuable time on samples that cannot be automated, evaluating data, preparing new samples, and documentation or inventing new methods or substances.

Don’t waste money on repetitions

In comparison to only using a stand-alone titrator, the automated system can reduce costs for repetitions. Due to the fact that the procedures have been tested before they are run autonomously, handling errors can be reduced to a minimum during the determination. These are typical tasks such as ensuring the sensor and buret tips are sufficiently covered by the sample solution, using the optimum stirring speed for the sample, as well as applying standardized cleaning procedures in between the analyses.

At first glance, these steps might not seem so important, but these have an impact if each lab technician involved in the analysis performs it in a slightly different manner based on their preference and experience. In the worst case, samples have to be repeated more often to prove the validity of the result. With automation, you no longer have to worry about this issue.

Reduce running expenses

The improved handling procedures mentioned above will reduce the costs for consumables such as electrodes. Thanks to the previously defined cleaning, conditioning, and storage procedures, the sensor lasts much longer. The only thing you have to consider is filling the electrolyte reservoir on a regular basis, which can not yet be automated.

However, if you are only running routine pH measurements, a solution already exists for this: the Ecotrode Gel, which allows you to run continuous measurements without any refilling until the electrolyte is exhausted.

The transparency of the electrolyte gel will show when it is time to change the electrode. Cool, isn’t it? 

Besides the electrodes, reagents and eventual waste disposal are topics that have to be taken into account when discussing the costs per analysis of an analytical device. Unfortunately, there are still several norms and standards using absurd amounts of organic solvents. All of these chemicals need a special treatment for proper disposal, i.e. the more waste solution produced, the higher the costs for its disposal—not to mention the impact on the environment.

In automated systems, the amount of these reagents can be reduced to a minimum as analyses can be carried out in beakers with a smaller diameter and perfectly positioned electrodes. Depending on the application, you can even reduce the cleaning procedure between the analyses to a simple dip in solvent rather than showering the electrode with an excess of solvent.

Fewer accidents thanks to walk-away automation

As an automated titration system runs independently for several hours or even overnight, the direct contact with harmful substances and reagents is already minimized. Modern titration systems do not only take over the analysis, but also guarantee the sample beakers are already pre-cleaned before you remove them from the system to put them in the dishwasher or dispose of them.

Even minimizing exposure to chemicals during the exchange of the reagents is possible if your system is equipped with 3S technology, which makes titrant change simpler than ever. The safer the system, the smaller the risk of exposure to hazardous chemicals while handling during sample analysis or disposal. 

We all know that an accident is one thing, but the administration afterwards can also be a real nightmare. Therefore, it is better to avoid situations prone to causing accidents, as it keeps people healthy and the associated costs down.

Increase your profit

Increasing the sample throughput has a direct impact on your profit. Without automation, more analysts are needed to handle the increasing number of samples, but finding well-educated lab technicians becomes ever more challenging and costly. Furthermore, boring routine titration analysis is not the work that lab staff desires.

Automation – not as expensive as you may have thought

Perhaps you started reading this blog post thinking that automation is too expensive for your lab, especially compared to the investment for a simple stand-alone titrator. However, as shown in this article, several kinds of savings can be achieved using an automated titration system.

Consider your regular expenses for consumables, reagents, and time spent for repeated analyses. How often were the results not available either fast or good enough for the production to continue? Think about discussions on safety in the lab when a colleague was injured. Also, how often was the efficiency and profitability of your lab questioned due to the running costs? Considering this, you will see the return on investment is unbelievably good with automation. The more samples you perform fully automated, the faster the initial investment pays off and creates better financial statements for you.

At Metrohm, we don’t just sell titrators. We provide titration solutionsWe offer systems as sophisticated or as straightforward as you need them. Titrator, accessories, electrodes, sample changers, and software – all from a single source.

Looking for a titrator?

Check out our selection here!

Post written by Heike Risse, PM Titration (Automation) at Metrohm International Headquarters, Herisau, Switzerland.

Why consider automation – even for simple titrations

Why consider automation – even for simple titrations

If you are reading this blog post, you are most likely already familiar with the general principles of potentiometric titration. Although chromatographic and spectroscopic methods are preferred in many labs, titration is still “the” method for analysis of all kinds of sample types. Titration stands apart from other techniques because it is an absolute method (also known as a primary method). Whenever the analyte reacts in a known stoichiometric way with another reagent, titration is the method of choice, not only for official norms and standards.

Nowadays, titration is far more modern than it was back when I was a student. At that time we still used glass burets and color indicators, and suffered from inconsistent results. Although the automatic addition of the titrant and the recognition of the equivalence point are now performed by the titrator itself in most labs, there are still many manual steps that can go wrong and lead to unreliable results.

If the used titrator is a stand-alone type, the analysis becomes a full-time job for the lab technician. Not only must the sample be prepared, the titration itself has to be started after the sensor and buret tip have been placed in the sample solution. If using a titrator, the addition of the titrant as well as evaluation and calculation of the results will be done automatically. However, cleaning after each finished determination and preparation for the next sample still remains the task of the lab technician. In many cases, the titration does not take much longer than 3–5 minutes. Due to this short period, there are not many other tasks which can be completed by the technician during the analysis time.

Using a fully automated titration system results in not only more efficient analyses, but achieves better and even more reproducible ones at the same time. Let’s find out how!

Save valuable time

Time savings is one of the biggest benefits of using automation. To get a better idea about the general amount of time that can be saved, have a closer look at this diagram. You can already see how many steps can be done by an automated titration system, leaving analysts more time for other tasks.

A proper analysis starts with the correct liquid handling.

Sample determination in titration can consist of several manual steps beyond the addition of the titrant. Depending on the type of sample and analysis, different kinds of sample preparation steps are required. The most common ones are the manner of sampling itself, dilution, auxiliary reagent addition, pH, or temperature adjustment.

Taking the correct amount of representative sample can already be quite a demanding task. For many applications, the sample is weighed if it is solid (e.g., powder or tablets), but this does not work for all sample types. Liquids are normally measured using measuring cylinders or pipets. These are very accurate and helpful tools if the user knows how to handle them correctly.

As long as the same person is performing the sampling, the results should be very reproducible, but in most labs this is not the case. Usually more than one person is responsible for the same analysis due to shift work, which can result in differing or less reproducible results.

With fully automated volumetric sampling, the only thing you need to care about is making sure enough sample is placed in the sample beaker! The connected dosing device is able to pipet the requested sample amount very accurately to the titration cell. The big advantages of using an automated pipetting system is its flexibility (e.g., even 3.75 mL can be pipetted fully automatically). Due to its independence of the user, the sampling and the results become much more reproducible.

Dilution / Addition of auxiliary reagents

In many cases, the sample amount needed for the analysis is not sufficient enough to put the sensor directly in and begin analysis. Often deionized water (or another suitable solvent) is added to reach a sufficient volume for the sensors to be placed in.  As titration is an absolute method, the amount of added solvent has no impact on the titration results, as long as the solvent does not react in the same way as the sample does with the titrant. 

A typical example is the solvents used for TAN/ TBN analysis in the petrochemical industry. Here, it is important to measure the amount of added solvent accurately and make sure to determine the blank value in advance. 

There are quite a few other applications where an accurate amount of reagent must be added: e.g., to start or stop a reaction, preparing back titrations, or for general pH adjustments before the final titration can take place.

For these tasks, measuring cylinders and pipets are normally used, but this is often tedious and can lead to mistakes, especially if many samples have to be analyzed. These days, many stand-alone titrators already offer the possibility to automatically and accurately add reagents, including the titrant. Repetitive (and annoying!) manual preparation steps therefore no longer occupy the lab technician.

Since reagent addition is part of the sample determination procedure, these added volumes can be documented much easier and more accurately, meaning less trouble when it comes to the analysis procedure traceability.

So, how good can such a buret be? Metrohm offers burets with a resolution of 100,000 pulses where even minute volumes can be dosed with extreme accuracy. For example, when using a 50 mL cylinder unit we are speaking about 0.5 µL per pulse.

 

The best liquid handling is not good enough if the sensor measures incorrectly.

The heart of each titration or measurement is the chosen sensor. It is especially important in potentiometric titrations that both measuring and reference electrodes are properly cleaned, and if necessary, also conditioned between analyses. Otherwise, false equivalence points might be indicated, or instable curves will be shown, which leads to inaccurate and unreproducible results. Therefore, proper sensor maintenance is also important. Although many lab technicians are trained about handling the electrode correctly, some things may be forgotten after some time and this is where the trouble starts.

Quite often it takes some time before realizing that the wrong electrode treatment is the reason for the differing results. Several issues could be cleared up due to either the absence of electrode cleaning/conditioning or perhaps the cleaning step was not long enough. Similar to the titration itself, the manual cleaning steps also depend on the user performing this task. With an automated setup, this can be easily avoided as the electrode is treated in the exact same way for each determination. Additionally, automating the titration guarantees that the sensor is always properly stored, even if the sample series finishes in the middle of the night when no one is in the lab to do this.

In the blog entry «Avoiding the most common mistakes in pH measurement» you will find more useful hints for correct sensor handling in general.

 Last but not least, a well-treated electrode not only gives you outstanding results, but also lasts much longer and reduces the costs of consumables.

Automation rocks – even for simple titration applications.

Here I have explained several reasons to consider automation even for simple titration applications. By including as many sample preparation steps as possible directly into the analysis run, this guarantees that each sample is treated exactly the same way, along with a better documentation process. Not only is there a reduction in handling errors during sampling, liquid handling, and electrode treatment, but as a result of these the reproducibility will be increased. On top of this, lab technicians are no longer occupied with annoying routine sample preparation/determinations, but have more time for reporting tasks or other analyses which are not automated – i.e. the laboratory throughput increases.

Post written by Heike Risse, PM Titration (Automation) at Metrohm International Headquarters, Herisau, Switzerland.

To automate or not to automate? Advantages of PAT – Part 1

To automate or not to automate? Advantages of PAT – Part 1

I have to admit that the technological world of process analysis seemed foreign for me for a while. When I first heard about process automation, I imagined futuristic robots that do the work, similar to modern science fiction films. Perhaps many people might have the same impression.

There is often a great deal of uncertainty about what the expression «we automate your process» actually means. In this blog series, I want to show you that process analytical technology (PAT) is less complicated than expected and offers several advantages for users.

What does process analytical technology (PAT) mean? 

I was once told in conversation:

«Process analytics is for everyone who believes that they don’t need it.»

There is definitely truth in this statement, and it certainly shows the abundance of application possibilities. At the same time, it should be considered that in the future, users of process analytical technology will not only invest in conventional measurement technologies (e.g., direct measurement, TDLAS, GC), but also increasingly in the determination of substance properties and material compositions.

Pollution (gases and aerosols) in ambient air are especially harmful to human health. These substances can continuously and reliably be monitored by process analyzers.

PAT serves to analyze, optimize, and ultimately control processes and their critical parameters. This control makes a major contribution to quality assurance and the overall process reliability at the manufacturer. Thinking back to some well-known chemical disasters (e.g. Minamata, Toulouse, or Tianjin) in which poisonous substances were released, causing immense damage to people and the environment, the importance regarding regular monitoring of critical parameters becomes abundantly clear. The list of analytes that can and must be monitored is long, ranging from contamination in wastewater due to municipal or industrial wastewater treatment plants, to pharmaceutical agents, to gases and aerosols in the ambient air.

From Lab to Process

Considering the history of manufacturing and other industrial processes, it is clear that the ultimate goal is to increase throughput in ever-shorter timeframes, with an eye on safety measures and minimization of costs where possible. Independence through automation and fast, reliable data transfer is a high priority.

In order to make the process economically viable along the entire value chain, the resulting products should be manufactured at the highest quality in a short time and with minimal raw material and energy usage. For 24/7 operations in particular, knowledge of the composition of the starting materials and intermediate products (or rather, any impurities) is essential for optimal process control and reliability.

How can reliable process monitoring be ensured around the clock? Very few companies have company laboratories with an actual 3-shift operation, and often send their samples to external laboratories. Additionally, the samples are sometimes taken with longer time intervals between them. This carries various risks.

On one hand, the time lost between the sampling event and receiving the results from the analysis is enormous. It is only possible to react to fluctuations and deviations from target concentrations or limit values ​​with a certain delay. On the other hand, working and environmental conditions are not comparable and can lead to changes in the sample. Oxidation, pressure or temperature changes, introduction of moisture, and many other factors can change a sample’s original properties during transport, waiting periods, and manual laboratory analysis.

Example trend graph comparing process deviations mitigated by manual control (grey) and fully automatic process control (orange) via PAT.

Process analyzers: automated operation around the clock

Analyses, which are usually carried out manually, are automated by using industrial process analyzers. The samples are automatically removed from critical points in the production process and processed further. The information obtained is used to control the process without any delay, as the data can be transferred immediately to a central computing system at the plant. Automated analysis right at the sample point allows for increased accuracy and reproducibility of the data.

In practice, this entails rerouting a partial stream from the process in question to be fed to the analyzer by means of valves, peristaltic pumps, or bypass lines. Each sample is therefore fresh and correlates to the current process conditions. Probes can also be integrated directly into the process for continuous inline measurement.

The analysis is performed using common titration, spectroscopy, ion chromatography, or electrochemical methods known from the laboratory, which are optimally integrated into the process analyzer for each individual application requirement. The methods can be used in combination, allowing several measuring points to be monitored in parallel with one system. Thanks to the process analyzers that are specifically configured and expandable for the application, the optimal conditions for stable process control are obtained.

Spectroscopic methods have become particularly well-established in recent years for process analysis and optimization purposes. In contrast to conventional analysis methods, near-infrared (NIR) spectroscopy shows a number of advantages, especially due to the analysis speed. Results can be acquired within a few seconds and transferred directly to the chemical control system so that production processes can be optimized quickly and reliably. Samples are analyzed in situ, completely without the use of chemicals, in a non-destructive manner, which means further added value for process safety.

The many advantages of PAT

Automation in the context of process analysis technology does not always have anything to do with futuristic robots. Instead, PAT offers companies a number of advantages:

 

  • Fully automatic, 24/7 monitoring of the process
  • Timely and automatic feedback of the analysis results to the system control for automatic process readjustment
  • Reduction in fluctuations of product quality
  • Increased process understanding to run production more efficiently
  • Independent of your own laboratory (or contract lab)
  • Complete digital traceability of analysis results
  • Total solution concepts including sample preconditioning, saving time and increasing safety

What’s next?

In our next post in this series, you will discover the role process analysis technology plays in digital transformation with regard to «Industry 4.0».

Want to learn more about the history of process analysis technology at Metrohm? Check out our previous blog post:

Read what our customers have to say!

We have supported customers even in the most unlikely of places⁠—from the production floor to the desert and even on active ships!

Post written by Dr. Kerstin Dreblow, Product Manager Wet Chemical Process Analyzers, Deutsche Metrohm Prozessanalytik (Germany), with contributions from Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters (Switzerland).

How Mira Became Mobile

How Mira Became Mobile

Handheld Raman spectrometers are truly like no other analytical chemical instruments. All spectrometers (e.g. IR/NIR, UV-Vis, GC/MS, and Raman) rely on interactions between matter and energy and include detectors that collect information about resulting atomic and molecular changes. This information is used to qualify and/or quantify various chemical species. Typically, a spectrometer is a benchtop instrument attached to a computer or other visual display that is used by an analytical chemist in a laboratory.

Classical Raman spectrometers fall into this category. Lasers, filters, detectors, and all associated hardware for sampling is combined in one unit, while data processing and viewing occurs nearby.

For a comparison of other spectroscopic techniques, visit our previous blog post «Infrared spectroscopy and near infrared spectroscopy – is there a difference?».

Raman is a unique investigative analytical technique in many ways. It is said, «If you can see it, Raman can ID it.»

Indeed, Raman’s strengths are its simple sampling methods combined with its specificity. Direct analysis is possible for many pure substances without sample preparation. Sampling is performed via direct contact with a substance, remotely, or through a barrier. Even solutes in water may be directly identified. This technique is highly specific; each material investigated with Raman produces a unique «fingerprint» spectrum. Raman spectroscopy is successful at positively identifying each distinct substance, while accurately rejecting even very similar compounds.

Mira (Metrohm Instant Raman Analyzer) with several sampling attachments for easy analysis: with or without sample contact.

The Raman spectrum

Raman spectra contain peaks across a range that correspond to specific molecular connectivity and can be used to determine the composition of a sample. The spectral range is dependent on spectrometer design, and embodies a balance of resolution and sensitivity.

The «fingerprint region» (400–1800 cm-1) is used to ID unknowns and verify known materials. The region below 400 cm-1 is helpful in the analysis of minerals, gemstones, metals, and semiconductors. For most organic materials (oils, polymers, plastics, proteins, sugars/starches, alcohols, solvents, etc…), very little information above 2255 cm-1 is useful in Raman applications, as carbon-hydrogen chains contribute little to molecular qualification.

A selection of different bonds and functional groups with their general regions of activity in the Raman portion of the electromagnetic spectrum (click to enlarge).

Mira’s measuring range of 400–2300 cm-1 is perfect for most Raman applications, including:

  • Pharma & Other Regulated Industries
  • Food
  • Personal Care & Cosmetics
  • Defense & Security
  • Process Analytics
  • Materials ID
  • Education & Research

Mira is available in different configurations for all kinds of applications and user needs.

Good things come in small packages

Technology, analysis, ease of use, accuracy—handheld Raman has all of this in a small format that escapes the confines of the lab. It also invites many new types of users who employ Raman for vastly new and exciting applications. In the rest of this blog post, I share details about the development of components that led to miniaturization of Raman. This is followed by the origin story of Metrohm Raman, manufacturer of Mira (Metrohm Instant Raman Analyzers).

Four significant innovations came together to create Mira: diode lasers, specialized filters and gratings, on-axis optics, and the CCD (Charge Coupled Device) in a unique design called the «astigmatic spectrograph». These basic components of a Raman spectrograph can be seen in the graphical representation above (click to enlarge). Note that this is not an accurate depiction of the unique geometries found within Mira’s case!

Raman spectroscopy is a technique which relies on the excitation of molecules with light (energy). C.V. Raman’s discovery of Raman scattering in 1928 was enabled by focused sunlight, which was then quickly replaced with a mercury lamp for excitation and photographic plates for detection. This resulted in a simple, popular, and effective method to determine the structure of simple molecules.

C.V. Raman. India Post, Government of India / GODL-India

The first commercial Raman spectrometer was available in the 1950’s. As lasers became more available in the 1960’s, followed by improved filter technology in the 1970’s, Raman grew in popularity as a technique for a wide range of chemical analysis. Integrated systems were first seen in the 1990’s, and the miniaturization of instruments began in the early 2000’s.

Miniaturization of Raman spectrometers

Diode lasers were the first step toward handheld Raman. For those of you at a certain age, you may remember that these are the kind of small, cool, low energy lasers used in CD players, stabilized at the source with a unique kind of diffraction grating.

Powerful, efficient optical filters also contribute to miniaturization by controlling laser light scattering within the spectrograph. The development of sensitive, small Charge Coupled Devices (CCDs), which are commonly used in mobile phone cameras, permitted the detection of Raman scattering and efficient transmission of the resulting signals to a computer for processing.

The astigmatic spectrograph simplified both geometry and alignment for the many components within a Raman spectrometer; this design was the final advancement in the development of handheld Raman.

From Wyoming to Switzerland

By the 1990’s, new technologies developed for diverse industries were being incorporated into Raman spectroscopy. In Laramie, WY (USA) at the time, Dr. Keith Carron was a professor of Analytical Chemistry with a focus on Surface Enhanced Raman Scattering (SERS). Dr. Carron already had robust SERS tests, but he envisioned a low-cost Raman system that would introduce his tests to industrial, medical, or defense and security markets. His next steps would revolutionize Raman spectroscopy. 

Using commercial off-the-shelf parts, Dr. Carron and his team developed an economical benchtop instrument that eliminated the high cost of Raman analysis, helping to enable its use in university curricula. In the early 2000’s, a research and education boom began as Raman grew from an esoteric technique used in high-end applications to becoming widely available for all kinds of tasks. Dr. Carron is responsible for ushering Raman into the current era. A collaboration led to a portable Raman system and, ultimately, to a new astigmatic spectrograph design in a very small instrument.

The U.S. tragedies on September 11, 2001 created an immediate push for technology to detect terrorist activity. Around this time, anthrax scares further enforced the need for “white powder” analyzers. Fieldable chemical analysis became the goal to achieve.

Dr. Carron was inspired to invent a truly handheld, battery powered Raman device for the identification of explosives and other illicit materials. A number of iterations led to CBex, a palm-sized Raman system (even smaller than Mira!) designed by Snowy Range Industries, in February 2012 (see image). CBex caught the attention of Metrohm AG, and an offer of cooperation was sent to Dr. Carron in August 2013.

Along comes Mira

Mira was born in 2015. Not only is it a novel analytical instrument, but it is also unique amongst handheld Raman spectrometers. Mira has the smallest form factor of all commercially available Raman instruments. What truly sets Mira apart from the competition is its built-in Smart Acquire routines, which provide anyone, anywhere, access to highly accurate analytical results. It is rugged, meeting MIL-STD 810G and IP67 specifications—you can drop Mira or submerge it in a liquid to get an ID.

Once Raman escaped the confines of the laboratory, it suddenly had the potential for new uses by non-technical operators, who could perform highly analytical tests safely, quickly, and accurately.

In fact, miniaturization of Raman has revolutionized safety in a number of ways:

  • Direct analysis eliminates dangers from exposure to laboratory solvents and other chemicals.
  • Through-packaging analysis prevents user contact with potentially hazardous materials.
  • Simplified on-site materials ID verifies the quality of ingredients in foods, medicines, supplements, cosmetics, and skin care products.
  • ID of illicit materials such as narcotics, explosives, and chemical warfare agents supports quick action by military and civilian agencies.

What’s Next?

I hope that you have enjoyed learning about the evolution of Raman technology from benchtop systems to the handheld instruments we have today. In the coming months we will publish articles about Mira that describe, in detail, several interesting applications of handheld Raman spectroscopy—subscribe to our blog so you don’t miss out!

As a sneak preview: In 1 month we will be introducing a brand new system, aimed at protecting consumer safety through the ID of trace contaminants in foods. Stay tuned…

Free White Paper:

Instrument Calibration, System Verification, and Performance Validation for Mira

Post written by Dr. Melissa Gelwicks, Technical Writer at Metrohm Raman, Laramie, Wyoming (USA).