Select Page
USP  – simple automated analysis of ultrapure water

USP <645> – simple automated analysis of ultrapure water

H2O – two simple elements, oxygen (O) and hydrogen (H), fuse together to form one of the most important molecules in the world: water. Water is everywhere on Earth and it is vital for our health and survival. It often contains other ions like calcium, magnesium, and chloride which are essential for the human body to function. However, in specific situations, ultrapure water (UPW) is needed to prepare e.g., injections or other solutions used in hospitals. How is the quality of UPW ensured so that it is always suitable for such medical purposes? The answer to this comes from USP <645>. This standard explains how the water quality can be determined and how this analysis must be performed.

Instruments

For this analysis, a measuring device capable of measuring the conductivity and the pH value is required. If a combined device is not available, then using two separate ones is also fine. Then, a pH electrode that is especially suitable for the determination of the pH value of water and a conductivity cell for measurement of low conductivities is necessary. In this case, the Aquatrode plus and the stainless steel conductivity cell are recommended.

The Aquatrode plus responds very quickly in ion-deficient matrices (such as ultrapure water) and thanks to its double junction system, the bridge electrolyte can be chosen freely.
The stainless steel conductivity cell has been specially designed for measurements in samples with low conductivity. With a cell constant of c = 0.1 cm-1, it is ideal for conductivities ranging from 0–300 µS/cm. The built-in temperature sensor makes handling even easier as no additional sensor is needed for the temperature measurement.

USP <645> procedure

Now that the necessary instrumentation has been introduced, it’s time to take a look at the standard procedure itself. At first glance this looks a bit difficult as it is a three-step analysis, or actually a four-step analysis if you count the calibration as well.

Step 1: First, calibrate the pH electrode and the stainless steel conductivity cell (sensor). The pH electrode is calibrated with pH 4 and 7 solutions, whereas the stainless steel sensor is calibrated with a 100 µS/cm standard.

Find the standard solutions you need here:

Step 2: After calibrating the sensors, both the temperature of the water and the conductivity are measured without temperature compensation. If the measured conductivity is lower than the value mentioned in the table of USP <645>, then the requirement for the conductivity is met and the water can be used for medical purposes. If this is not the case, then step 3 must be performed.

Step 3: 100 mL water is transferred to an external titration vessel where its temperature is adjusted to 25 ± 1 °C. The water is stirred vigorously to incorporate carbon dioxide present in the air. If the conductivity does not change by more than 0.1 µS/cm per 5 minutes, the value is noted for further evaluation. If this value is below 2.1 µS/cm, then the water is usable for medical purposes. If not, then proceed with step 4.

Step 4: The solution is tempered to 25 ± 1 °C. Once the temperature is stable, 0.3 mL of saturated KCl solution is added and the pH of the water is measured. The pH value must lie between pH 5 and 7. If this is not the case, the water does not meet the requirements and must be discarded. If the pH is measured between 5 and 7, then the conductivity must additionally be lower as mentioned in the USP <645> table. If this is the case, the analysis passes and the water can be used for medical purposes.

Automation of USP <645>

The analysis can be quite time-consuming and therefore Metrohm has provided a solution to make this process much easier. Our system combines all of these steps into one method, allowing you to perform walk-away automation and focus on more important tasks.

To expand the capabilities of the measuring system, the 856/867 modules can be exchanged with a modular OMNIS Titrator which can also be used for other standard potentiometric titrations.

Take a closer look at our automated analysis solution

Proper electrode immersion depth
  • Aquatrode plus for accurate pH measurement in ion-deficient matrices
  • Stainless steel conductivity cell for low conducting samples
  • Special holder for performing step 2 of the standard procedure
  • Thermostated vessel (for step 2)
  • DIS-Cover lid to prevent the sample from CO2 uptake (before step 3)
  • Rod stirrer to saturate the solution with carbon dioxide (for step 3)

Conclusion

With this complete system, standard analysis of UPW quality according to USP <645> is performed in a fully automatic and reliable manner. At the end of each analysis a clear message is received if the deionized water (UPW) has passed the test or not. Handling is very easy and allows users to check if an analysis passes or not with just a glance.

Download our Application Bulletin

Automatic conductometry in water samples with low electrical conductivity in accordance with USP<645>
Post written by Iris Kalkman (Product Specialist Titration) and Heike Risse (Product Manager Titration – Automation), Metrohm International Headquarters, Herisau, Switzerland.
Green hydrogen generation: A cross-disciplinary challenge rooted in electrochemistry

Green hydrogen generation: A cross-disciplinary challenge rooted in electrochemistry

Green hydrogen, produced from water electrolysis using renewable energy sources, is being explored as a strategy to reduce the dependence on fossil fuels and decarbonize chemical processes. From an environmental standpoint, this approach is extremely attractive given that mild conditions are used during electrolysis and there are no greenhouse gases produced when using the hydrogen in a fuel cell.

However, the economics of electrolysis and fuel cell systems for energy conversion relies heavily on the costs of electricity and of metals like nickel, platinum, iridium, and titanium. Electrolyzer operating expenses must be minimized for green hydrogen to become an economically viable option. The electricity input contributes heavily to cost. Thus, decreasing the cost of renewable energy is a necessary step. Solar panels becoming more efficient and affordable within the past decades is cause for optimism in this regard [1], but there is much more that can be done to increase the success of green hydrogen. More efficient electrolyzers could make better use of the input electricity and the development of cheaper and more durable components can reduce both the capital and operational costs.

Check out our other blog articles about green hydrogen and decarbonization of chemical processes below!

Cross-disciplinary interest in green hydrogen

Electrolyzers are primarily electrochemical devices with electrocatalysts responsible for water splitting (Figure 1). The scientific challenges related to optimizing electrolyzers are attracting the attention of researchers that are not traditionally trained in electrochemistry. The search for efficient HER (Hydrogen Evolution Reaction) and OER (Oxygen Evolution Reaction) electrocatalysts also piques the interest of inorganic chemists and physicists. Development of better membranes calls for expertise in organic and polymer chemistry. Optimization of catalyst inks and their interaction with substrates requires the know-how of a materials scientist. Heat and mass flow management within the fuel cell stack and balance of plant are engineering endeavors. Clearly, the ongoing development of green hydrogen technologies has encouraged the collaboration of scientists and engineers across many disciplines. The result is an influx of creativity and insight, as well as development of exciting new materials and techniques.

Figure 1. Diagram of the electrolysis of water (water splitting) with respective half reactions at the cathode and anode in alkaline and acidic media.

Back to basics

Working in an unfamiliar domain means there is a need for quickly getting up to speed with best practices and learning a new scientific vocabulary. For many institutions, education on electrochemical principles and laboratory skills was not a key focus area until recent years.

In some cases, the deficiency of fundamental electrochemical training has led to inconsistencies in the reporting of important performance indicators. The electrochemical community has taken note of this and called for a more rigorous approach. As a result, experts have stepped up and provided practical guidance for quantifying and reporting in this domain.

When investigating electrocatalyst materials it is necessary to have benchmarks and well-defined performance indicators. In 2013, a comprehensive benchmarking protocol for evaluating and reporting figures of merit for OER electrocatalysts was published.

This JACS article [2] provides practical advice on how to interpret the catalyst surface in terms of roughness and geometric surface area and how to perform and analyze measurements for valid comparisons of electrocatalytic performance.

A common source of confusion and inconsistency in electrochemical measurements is the use of various reference electrodes (RE). Electrocatalytic activity is judged by the overpotential needed for a specified production rate (i.e., the current density for the HER or OER process, Figure 1). A three-electrode setup is needed to measure the potential, and the RE is crucial for situating this potential on a relative scale, allowing comparison of measurements carried out by different groups and in various conditions.

Find out more about reference electrodes and their usage in our free Application Note.

A 2020 Viewpoint article in ACS Energy Letters [3] provides a detailed explanation of how to report the overpotential of an electrocatalyst, focusing on commonly used reference electrodes like Hg/HgO, Hg/Hg2Cl2 (SCE), and Ag/AgCl.

The reversible hydrogen electrode (RHE) is another commonly used RE that is extremely well-suited for HER and OER studies. A recent ACS Catalysis article [4] explains why the RHE is the ideal reference electrode for electrolysis research and explains how to prepare and work with an RHE. By convention, all standard redox potentials are reported versus the standard hydrogen electrode (SHE). The RHE is a pH-dependent extension of the SHE and refers to the reduction of a proton under non-standard conditions as described by the Nernst equation.

Electrolyzers operate under both acidic and alkaline conditions, thus, the HER and OER are studied across the pH scale (Figure 1). The RHE is suitable for use at any pH and it shares the same dependency on pH as the HER and OER.

A common ground to stand on

Finding common language and understanding between these different fields is vital. This JOC synopsis article [5] clarifies electrochemical concepts for organic chemists. The article is highly visual, providing schematics that link concepts like free energy, redox potential, and overpotential. Equilibrium thermodynamics helps to provide a common point of reference that all chemists can relate to.

Thermodynamic analysis is often applied to quantify the energy efficiency of electrolysis cells and stacks. A recent review article in the Journal of Power Sources [6] highlights diverging definitions for the energy efficiency coefficient from academic and industrial literature. The article provides derivations in various conditions and reminds readers that both electricity and heat must be accounted for in the analysis.

Summary

The articles highlighted in this blog post represent just a small fraction of the many resources available for building a common understanding and better collaboration among all researchers working on the improvement of green hydrogen technologies. When the COVID pandemic shut down laboratory work and travel for many people, the research community carried on with enthusiasm.

Online seminars and working groups held openly and without cost have brought scientists together across disciplines and from around the world. For example, the Electrochemical Online Colloquium was started in 2021. This ongoing series of lectures addresses essential topics in electrochemistry by providing educational content alongside the personal perspective of expert speakers.

The electrochemical community is acutely aware of the importance of transitioning to sustainable and climate-safe energy and chemical processes. Energy storage and conversion through green hydrogen is a promising strategy that requires scientific advancement to thrive. Thankfully, researchers from across many disciplines are bringing their skills and creativity to this topic while the electrochemical community continues to drive collaborative efforts and share their core knowledge.

To find out more about associated topics, download these free Application Notes from Metrohm Autolab.

References

[1] Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5°C Climate Goal; International Renewable Energy Agency: Abu Dhabi, 2020.

[2] McCrory, C. C. L.; Jung, S.; Peters, J. C.; et al. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135 (45), 16977–16987. doi:10.1021/ja407115p

[3] Niu, S.; Li, S.; Du, Y.; et al. How to Reliably Report the Overpotential of an Electrocatalyst. ACS Energy Lett. 2020, 5 (4), 1083–1087. doi:10.1021/acsenergylett.0c00321

[4] Jerkiewicz, G. Standard and Reversible Hydrogen Electrodes: Theory, Design, Operation, and Applications. ACS Catal. 2020, 10 (15), 8409–8417. doi:10.1021/acscatal.0c02046

[5] Nutting, J. E.; Gerken, J. B.; Stamoulis, A. G.; et al. “How Should I Think about Voltage? What Is Overpotential?”: Establishing an Organic Chemistry Intuition for Electrochemistry. J. Org. Chem. 2021. doi:10.1021/acs.joc.1c01520

[6] Lamy, C.; Millet, P. A Critical Review on the Definitions Used to Calculate the Energy Efficiency Coefficients of Water Electrolysis Cells Working under near Ambient Temperature Conditions. J. Power Sources 2020, 447, 227350. doi:10.1016/j.jpowsour.2019.227350

Post written by members of the Metrohm Autolab group, Utrecht, The Netherlands.
The evolution of handheld 785 nm Raman spectroscopy: Raman extraction from fluorescence interference

The evolution of handheld 785 nm Raman spectroscopy: Raman extraction from fluorescence interference

MIRA DS (Metrohm Instant Raman Analyzer) is a handheld Raman system that identifies materials using 785 nm laser excitation. The advantages of using 785 nm Raman are well understood. Excitation with shorter wavelengths produces strong Raman scattering with short acquisition times. This results in a high signal-to-noise ratio and provides excellent spectral resolution with lower power draw. These are just some of the reasons that handheld Raman has become so popular over the last two decades.

The sensitivity of Raman at 785 nm also means that lower laser powers can be used. Lower laser powers help to protect sensitive samples from burning or ignition. The silicon detectors used at shorter wavelengths do not need to be cooled, further extending battery lifetimes. The net result is that 785 nm systems can be very small and still provide fast and accurate material identification for long hours in the field.

Learn more about how MIRA became mobile in our previous blog post.
However, while this is considered the «sweet spot» for both a strong signal and fluorescence mitigation among possible wavelengths, approximately 10% of Raman active materials fluoresce under interrogation with 785 nm Raman systems [1]. For example, Gum Arabic is a widely used filler and binding agent. When sampled with 785 nm systems, its fluorescence overwhelms the Raman signal (more on this subject later). Similarly, cutting agents (e.g., sucrose found in street drugs) fluoresce and can prevent positive identification of the target substance. Dyes can be problematic in the analysis of tablets, foodstuffs, art, and plastics as well. Often, weak Raman features can still be observed in fluorescent materials with 785 nm interrogation, but fluorescence mitigation is crucial for library matching.

Previous recommendations to overcome fluorescence

When fluorescence is an issue, 1064 nm laser excitation is often recommended. The tradeoffs include higher laser power, increased sample heating, longer interrogation times, and low Raman scattering efficiency. Often, this means larger instruments with shorter battery lifetimes. Instruments from some manufacturers require longer acquisition times that slow down sampling and can potentially damage the sample.

Is there a better way?

In a word, yes. SSE (Sequentially Shifted Excitation) can be used to remove fluorescent contributions to a Raman spectrum by using a laser that shifts the excitation wavelength as a function of the laser temperature. The result is a very large «handheld» system with a shoulder strap and a high price tag, partly due to the expensive laser used. Aside from the bulk and the cost, another issue with these systems is that the constant temperature cycling of the laser causes the system’s battery to have a short lifetime.

A Metrohm solution

Metrohm Raman has designed a fluorescence rejection system based on its compact MIRA DS package using an IPS single-mode 785 nm laser. The system is capable of producing excellent spectral resolution and flat baseline data with low laser power, short acquisition times, and all of the other excellent functionalities that users have come to expect from MIRA DS.

This fluorescence rejection system is built upon a MIRA DS platform, preserving all of its unique capabilities:

MIRA XTR DS

MIRA XTR DS is the evolution of Raman spectroscopy. It combines the smaller size, higher resolution, and lower power consumption of a 785 nm Raman instrument with patent-pending advanced algorithms to eXTRact Raman data, even from spectra that have strong fluorescence!
Figure 1. Comparison of Raman spectra of Gum Arabic powder measured by 1064 nm, 785 nm (MIRA DS), and XTR® (MIRA XTR DS).
Figure 1 contains Raman spectra from a fluorescent material, Gum Arabic powder, with traditional 785 nm and 1064 nm laser excitation, in addition to MIRA XTR DS. The improvement in resolution with XTR is obvious. Notice the very flat (uncorrected) baseline in the XTR spectrum on the bottom. This is crucial for library matching with a Pearson correlation, where the dot product between spectra and non-zero baselines contribute strongly to the correlation.

Learn more about MIRA XTR DS on our website.

Applications for MIRA XTR DS include Sensitive Site Exploitation / Intelligence Surveillance Reconnaissance (SSE/ISR) of clandestine labs and determination of synthetic routes to illicit products. MIRA XTR DS is designed for real world scenarios like the analysis of methamphetamine lab residues and identification of narcotics in street drug samples. This includes ID of narcotics, despite cutting agents that fluoresce and fail analysis at 785 nm. ORS™ combined with fluorescence rejection means that MIRA XTR DS can also delicately interrogate sensitive materials like colored explosive compounds.

Download our free White Paper below to find out more about the capabilities of MIRA XTR DS.

Classic applications improved with MIRA XTR DS

Lidocaine [2] is a local anesthetic that can also be used to cut cocaine because it enhances the immediate numbing sensation that many cocaine users associate with a high quality product. Since cocaine is typically present at only ~30% in street samples, its signal can be occluded by other components in the mixture. However, positive identification of common cutting agents like lidocaine can lead to further investigation of a suspect sample.

Traditionally, lidocaine was an issue for 785 nm Raman systems, as its fluorescence prevented both positive identification of lidocaine and detection of cocaine. MIRA XTR DS produces an excellent, fluorescence-free, resolved spectrum of lidocaine (Figure 2).

Figure 2. Comparison of Raman spectra of lidocaine hydrochloride measured by 1064 nm, 785 nm (MIRA DS), and XTR (MIRA XTR DS).
Diphenhydramine is another example of a common OTC drug that, when detected, may suggest darker dealings. It can be abused on its own, but it is also a potential precursor in the synthesis of methamphetamine. Diphenhydramine exhibits some fluorescence when interrogated with 785 nm Raman (Figure 3), but it is also typically present in mixtures with inert ingredients that fluoresce. For this type of analysis, SERS can be used to detect trace amounts of a substance. This is an excellent showcase for MIRA XTR DS, because it can perform both 785 nm Raman and SERS tests, while most 1064 nm systems currently on the market cannot be used for SERS analysis.
Figure 3. Left: MIRA XTR DS used for no-contact testing. Right: Comparison of Raman spectra of Diphenhydramine measured by 1064 nm SERS, 785 nm SERS (MIRA DS), and XTR SERS (MIRA XTR DS).
What’s the difference between Raman and SERS? Read our blog article to find out!

But MIRA XTR DS can do more!

With fluorescence mitigation, 785 nm Raman can be used more generally for material identification and chemical analyses.

Microcrystalline Cellulose

Microcrystalline cellulose (MCC) is another inert excipient that is commonly used in food production and the pharmaceutical industry. When interrogated with 785 nm Raman, its fluorescence can overwhelm the Raman signal and prevent identification and mixture matching (Figure 4).

Figure 4. Comparison of Raman spectra of MCC measured by 1064 nm, 785 nm (MIRA DS), and XTR (MIRA XTR DS).
Ketchup

Measurement of analytes in ketchup is a particularly interesting application, as it is a highly colored, complex mixture. With 785 nm testing, it shows fluorescence—with 1064 nm testing, it burns. But XTR analysis carries the added benefit of signal enhancement, returning a spectrum that clearly indicates the presence of trace lycopene in ketchup—the chemical that contributes its red color (Figure 5).

Figure 5. Comparison of Raman spectra of ketchup measured by 1064 nm, 785 nm (MIRA DS), and XTR (MIRA XTR DS).
Another important application demonstrates how MIRA XTR DS can distinguish imitation honey from the pure, unadulterated form in the pursuit of fraudulent food products, and that it shows promise for quantitative analysis. MIRA XTR DS extracts Raman spectra from materials that typically show fluorescence with 785 nm excitation, this time with sufficient resolution to detect different ratios of mixtures (Figure 6).
Figure 6. Comparison of Raman spectra of pure honey (left) and imitation honey (center) measured by 1064 nm, 785 nm (MIRA DS), and XTR (MIRA XTR DS). Right: Determination of the ratio of different mixtures of pure honey with adulterants using MIRA XTR DS. (Click image to enlarge.)

A powerful laboratory in the palm of your hand

Historically, Raman users dealt with fluorescence by using instruments with a 1064 nm laser. MIRA XTR DS combines the smaller size, higher resolution, and lower power consumption of a 785 nm laser with revolutionary machine learning to eXTRact Raman from fluorescent samples. The benefits are considerable!
  • Low power 785 nm laser interrogates sensitive samples without risk of ignition or burning.
  • Compact, pocket-sized design enables true single-handed operation of the device
  • The low power consumption means longer battery life for extended field use

MIRA XTR DS: all the best of handheld Raman with virtually unlimited applications.

Find out more about MIRA XTR DS

Download free white papers and learn more on our website.

References

[1] Christesen, S. D.; Guicheteau, J. A.; Curtiss, J. M.; Fountain, A. W. Handheld Dual-Wavelength Raman Instrument for the Detection of Chemical Agents and Explosives. Opt. Eng. 2016, 55 (7), 074103. DOI:10.1117/1.OE.55.7.074103

[2] Barat, S. A.; Abdel-Rahman, M. S. Cocaine and Lidocaine in Combination Are Synergistic Convulsants. Brain Res. 1996, 742 (1), 157–162. DOI:10.1016/S0006-8993(96)01004-9

Post written by Dr. Melissa Gelwicks, Technical Writer at Metrohm Raman, Laramie, Wyoming (USA).
Cyclic voltammetry (CV) – the essential analytical technique for catalyst research

Cyclic voltammetry (CV) – the essential analytical technique for catalyst research

Cyclic voltammetry (CV) is the backbone of most electrochemical research and is an essential electrochemical technique that allows researchers to explore candidate catalysts in greater depth. When coupled with modeling, a systematic goal-focused protocol will supply a range of data that will inform the user of more novel techniques and complex setups. This disciplined approach will save time in the long run, and is especially helpful to those who may have limited access to electrochemical instrumentation in a busy laboratory.
This article provides an overview of possible research goals when using CV along with relevant examples from scientific literature with the approach in action.
Electrocatalysis (ECAT) is defined as the catalysis of an electrode reaction. The electrocatalytic effect leads to an increase of the standard rate constant of the electrode reaction—resulting in a higher current density, or to a decrease in overpotential when other rate limiting steps are involved. The study of an electrocatalytic process requires characterization of the mechanism and kinetics of the electrode reaction. Forced convection methods can offer the advantage of reducing the contributions from mass-transport and providing direct access to the kinetic and mechanistic information.

In the last decade, a greater understanding of critical electrochemical transformations has been established, particularly those that involve water, hydrogen, and oxygen [1]. The expansion of our understanding in this realm was only possible because of the use of critical electrochemical techniques. This has allowed researchers to not only explore a wider variety of catalysts, but explore them in greater detail.

To respond to the potential volume of exploration which may discover more cost-effective and renewable materials that are not at the stage of critical depletion, a systematic approach to analytical research is required.

As always, new techniques are constantly being developed, but the gold standard technique of exploration of catalysts with cyclic voltammetry (CV) is still recommended as the starting point for researchers.
Instrumentation for CV analysis of catalysts from Metrohm Autolab.

Experimental Goals and Procedure Selection

To effectively explore a candidate catalyst, it is important to consider what the experimental goal is and then choose the procedure accordingly. Examples of possible goals are listed in the following sections along with suggested procedures and/or techniques.

Exploring a new system

Determine the (E) stability window of the electrolyte [2]

Method: Perform CV measurement in broad voltage (E) window, using an inert electrode (e.g. glassy carbon) and investigate the general redox behavior of the electrocatalyst material.

 

Investigate the general redox behavior of the electrocatalyst material [2]

Method: Perform CV measurement in a broad voltage (E) window, using a well understood electrolyte and new electrocatalyst.

Determine the electrode surface area for quantitative comparisons [3–5]

Method: Various methods that are material dependent: using a well-defined surface reaction (e.g. stripping or oxide formation) or analysis of electrochemical double layer capacitance (Cdl).

 

Investigate the stability of the electrocatalyst [6, 7]

Method: Perform repetitive CV measurements over several hundred cycles or during several days.

Probing a specific electrochemical reaction

Determine if a reaction is reversible (fast electron transfer kinetics), quasi reversible (slow kinetics), or irreversible (governed by other factors) [8, 9

Method: Perform CV measurements at various scan rate values, then examine dependencies for the peak position (Epeak) and peak height (Ipeak) on the scan rate.

Determine the apparent activation energy of the reaction [10]

Method: Perform CV measurements at various temperatures, then analyze electrochemical Arrhenius plots of log j vs. 1/T.

Combining CV with additional techniques to confirm results and deepen understanding

Determine the molecular structure of products or intermediates at a specific instance of the reaction [9–12]

Method: Perform CV measurement with in-situ spectroscopic determination (spectroelectrochemistry via UV/Vis/NIR or Raman spectroscopy).

Investigate material deposited or removed from the electrode surface during the electrochemical measurement [13]

Method: Measure the mass change at the electrode surface during a CV measurement using electrochemical quartz crystal microbalance (EQCM).

Investigate products and short-lived intermediates via their electrochemical response [14, 15]

Method: Perform bipotentiostat (two working electrodes) measurements in a ring/disk configuration (RRDE).

From action to reactions in the literature

This paper from the Nissan Fuel cell research center (NFCRC) summarizes the analytical approach for reduction of Pt loading in fuel cell catalyst layers (CL) [7]. Using a combined experimental and theoretical approach, they clearly outline the important properties required to measure experimentally or model to reach their goal of reducing the amount of Pt used in the CL. 

Focal parameters for exploration:

 

1. Catalyst Microstructure

Research goal: Determine the electrode surface

Using microscope images combined with the Cdl (double layer capacitance) and ionomer coverage, the researchers were able to analyze and quantify their catalyst layer. They used CV to determine ionomer coverage over the carbon by comparing Cdl values (wet versus dry).

 

2. Transport Properties

Research goal: Investigate material deposited or removed from the electrode surface during the electrochemical measurement

Additional research investigating the electrode surface was performed with CV. Using a rotating disk electrode, the researchers were able to determine the gas transport resistance by measuring the ORR (oxygen reduction reaction). CV also allowed the determination of the Pt roughness factor.

 

3. I-V performance

Research goal: Use CV I-V to calculate the fuel cell performance

I-V performance is a typical measurement for the overall performance of the fuel cell. A potentiostat is needed to measure the actual I-V curve in order to determine the Pt loading so that the I-V performance can be interpreted and compared among various samples.

    This paper illustrates the value of systematic exploration of catalysts with CV to give a comprehensive overview of attributes, structure, and reactions before moving on to more complex setups.

    Your initial investigations with CV may not provide all of the answers at first glance, but you can then move on to more complex setups and experiments with complete insight.

    Curious about electrochemistry?

    Metrohm has you covered.
    References

    [1] Seh Z. W.; Kibsgaard J.; Dickens C. F.; et al. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science 2017, 355, 6321. doi:10.1126/science.aad4998

    [2] Kübler, P.; Sundermeyer, J. Ferrocenyl-Phosphonium Ionic Liquids – Synthesis, Characterisation and Electrochemistry. Dalton Trans. 2014, 43 (9), 3750–3766. doi:10.1039/C3DT53402B

    [3] Biegler, T.; Rand, D. A. J.; Woods, R. Limiting Oxygen Coverage on Platinized Platinum; Relevance to Determination of Real Platinum Area by Hydrogen Adsorption. J. Electroanal. Chem. Interfacial Electrochem. 1971, 29 (2), 269–277. doi:10.1016/S0022-0728(71)80089-X

    [4] Trasatti, S.; Petrii, O. A. Real Surface Area Measurements. Int. Union Pure Appl. Chem. 1991, 63 (5), 711–734. doi:10.1351/pac199163050711

    [5] Kinkead, B.; van Drunen, J.; Paul, M. T. Y.; et al. Platinum Ordered Porous Electrodes: Developing a Platform for Fundamental Electrochemical Characterization. Electrocatalysis 2013, 4 (3), 179–186. doi:10.1007/s12678-013-0145-2

    [6] Pilapil, B. K.; van Drunen, J.; Makonnen, Y.; et al. Ordered Porous Electrodes by Design: Toward Enhancing the Effective Utilization of Platinum in Electrocatalysis. Adv. Funct. Mater. 2017, 27 (36), 1703171. doi:10.1002/adfm.201703171

    [7] Xing, L.; Hossain, M. A.; Tian, M.; et al. Platinum Electro-Dissolution in Acidic Media upon Potential Cycling. Electrocatalysis 2014, 5 (1), 96–112. doi:10.1007/s12678-013-0167-9

    [8] Rountree, E. S.; McCarthy, B. D.; Eisenhart, T. T.; et al. Evaluation of Homogeneous Electrocatalysts by Cyclic Voltammetry. Inorg. Chem. 2014, 53 (19), 9983–10002. doi:10.1021/ic500658x

    [9] Sokolov, S.; Sepunaru, L.; Compton, R. Taking Cues from Nature: Hemoglobin Catalysed Oxygen Reduction. Appl. Mater. Today 2017, 7, 82–90. doi:10.1016/j.apmt.2017.01.005

    [10] Barbosa, A. F. B.; Oliveira, V. L.; van Drunen, J.; et al. Ethanol Electro-Oxidation Reaction Using a Polycrystalline Nickel Electrode in Alkaline Media: Temperature Influence and Reaction Mechanism. J. Electroanal. Chem. 2015, 746, 31–38. doi:10.1016/j.jelechem.2015.03.024

    [11] Hernández, C. L.; González García M. B.; Santos , D. H.; et al. Aqueous UV-VIS Spectroelectrochemical Study of the Voltammetric Reduction of Graphene Oxide on Screen Printed Carbon Electrodes. doi:10.1016/j.elecom.2016.01.017

    [12] Görlin, M.; de Araújo, J. F.; Schmies, H.; et al. Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte PH. J Am Chem Soc 2017, 139 (5), 2070–2082. doi:10.1021/jacs.6b12250

    [13]  Lee, C-L.; Huang, K-L.; Tsai, Y-L.; et al. A Comparison of Alloyed and Dealloyed Silver/Palladium/Platinum Nanoframes as Electrocatalysts in Oxygen Reduction Reaction. Electrochem. Commun. 2013, 280–285. doi:10.1016/j.elecom.2013.07.020

    [14] Vos, J. G.; Koper, M. T. M. Measurement of Competition between Oxygen Evolution and Chlorine Evolution Using Rotating Ring-Disk Electrode Voltammetry. J. Electroanal. Chem. 2018, 819, 260–268. doi:10.1016/j.jelechem.2017.10.058

    [15] Kocha, S. S.; Shinozaki, K.; Zack, J. W.; et al. Best Practices and Testing Protocols for Benchmarking ORR Activities of Fuel Cell Electrocatalysts Using Rotating Disk Electrode. Electrocatalysis 2017, 8 (4), 366–374. doi:10.1007/s12678-017-0378-6

    Post written by members of the Metrohm Autolab group, Utrecht, The Netherlands.
    Best practice for separation columns in ion chromatography (IC) – Part 2

    Best practice for separation columns in ion chromatography (IC) – Part 2

    The second part of this blog series about best practice for IC separation columns focuses on application related topics that have an impact on the column suitability and stability. First, there is the proper choice of the column that best suits the intended application. Then we turn to the operating parameters which can be modified in order to optimize the separation between analytes, and what the respective effects and possibilities are.

    Choice of column length and diameter

    Metrohm offers a broad range of columns that contain different stationary phases, have different lengths and/or inner diameters. The choice of the stationary phase has a great impact on the selectivity between the individual analytes on the one hand, as well as the stability against different sample matrices on the other hand. Instead, the column length has no impact on the selectivity, but rather on the separation efficiency between the individual peaks.

    Find out more about Metrohm’s wide selection of separation columns for ion chromatography in our Column Catalog.
    Effects of column length

    In the following chromatograms (Figure 1), the effect of the column length on the separation efficiency for the Metrosep A Supp 17 column series is shown. Whenever choosing a column length, you should take the complexity of the intended separation and the presence of matrix components that could disturb the ions of interest into account.

    Figure 1. Effect of column length on the retention times of the standard anions on the Metrosep A Supp 17 column (1: fluoride, 2: chloride, 3: nitrite, 4: bromide, 5: nitrate, 6: sulfate, 7: phosphate). Click image to enlarge.
    Effects of column diameter

    In addition to providing different lengths of IC separation columns, Metrohm also offers most columns in both in 4 mm inner diameter and 2 mm inner diameter (known as «microbore») versions. With regard to this, there are several criteria to distinguish:

    • If you use online systems in a continuous mode (i.e. systems which run unattended for several days in a row such as the Metrohm Process Analytics MARGA system – Monitor for AeRosols and Gases in Ambient air), we recommend using 2 mm IC columns. Due to the reduced flowrate for microbore columns (only 25% of the flowrate for 4 mm columns), the eluent and the regenerant solutions last much longer, which increases the time the instrument can be left unattended.
    • There are applications that require hyphenated techniques such as IC-MS for higher analyte selectivity and sensitivity. In this case, the use of 2 mm columns is ideal. The low flowrate is optimal for the electrospray process, and thus no flow splitter is required before entering the mass spectrometer.
    • Sometimes, only a limited amount of sample is available for injection. In these situations, 2 mm columns are preferred. This is because less dilution/diffusion occurs during the separation process and therefore higher signals are obtained.
    • On the other hand, if your sample contains a high load of matrix components, then selecting a suitable 4 mm IC columns will be a better choice because of the higher capacity available to separate the desired analytes from the matrix.
    Find out more about MARGA and its capabilities for continuous air quality monitoring in our blog post.

    Optimizing the analyte separation

    Next to the column itself, several other parameters can be modified to optimize the selectivity of the separation. These parameters include temperature, eluent components and strength, and organic modifiers.

    Effects of modifying the temperature

    One of the simplest ways to fine tune the separation selectivity in IC is by modifying the temperature of the analysis. This is accomplished by using the integrated column oven in the instrument (if available). Multiple effects can be observed, for instance in anion analysis. As an example, the impact of the temperature on the selectivity is shown in the chromatogram overlay (Figure 2) for the Metrosep A Supp 17 column line.

    Figure 2. Effect of temperature variation on the retention times of a suite of standard anions on the Metrosep A Supp 17 column (1: fluoride, 2: chloride, 3: nitrite, 4: bromide, 5: nitrate, 6: sulfate, 7: phosphate). Click image to enlarge.
    • The monovalent ions such as fluoride, chloride, nitrite, bromide, and nitrate are all accelerated with increasing temperature, indicating that fewer interactions with the stationary phase happen.
    • The behavior of multivalent ions such as phosphate or sulfate is more complicated to describe and will vary with each stationary phase. In general, multivalent ions are retarded more at higher temperatures, which causes the retention times to increase, as can be seen for sulfate. Phosphate on the other hand behaves differently, because of the temperature induced change of the eluent pH in a range close to the pKa value of phosphate. Due to this pH change, the effective charge of the phosphate ion changes as well (in this example, the effective charge is reduced with increasing temperature).
    • The peak shape of the polarizable ions such as nitrite, bromide, and in particular nitrate, is significantly improved at higher temperatures. The reason for this behavior is the reduction of secondary interactions with the stationary phase.
    Effects of modifying the eluent composition and strength

    Eluent composition and strength can be used to change the elution order of several analytes while using the same separation column. In cation chromatography, a retention model was developed by P.R. Haddad and P.E. Jackson, which allows researchers to predict retention times when changing the eluent composition [1].

    Considering that the column remains identical in each determination, no change of ion exchange equilibrium and column capacity is to be expected. Therefore, when changing only the eluent concentration, the following correlation can be used:
    Where:

    • k’ is the retention factor of the analyte of interest
    • c is a constant
    • x is the charge of the analyte
    • y is the charge of the eluent
    • Ey+M is the concentration of the eluent in the mobile phase
    If nitric acid is used as the eluent, y = 1, and the model can be simplified to:
    Applying this formula to practical situations in the laboratory means the following: with increasing the eluent strength, alkaline earth metals are accelerated much faster (x = 2) in comparison with alkali metals (x = 1), and thus it is possible to elute magnesium before potassium. This effect is called electroselectivity.

    Multivalent metal ions are capable of forming complexes with dedicated complexing agents. Therefore, selectivities can be modified by adding complexing agents to the eluent. As an example, dipicolinic acid (DPA) is often used to complex calcium, which leads to a reduction of the effective charge of calcium. As a consequence, the retention time of calcium is reduced and calcium elutes before magnesium in the chromatogram (Figure 3).

    The retention of monovalent cations can be influenced by the addition of crown ether to the mobile phase.

    Figure 3. Effect of DPA concentration in the eluent on the retention times of several cations measured using the Metrosep C 6 column.
    Anion systems are more complex regarding the retention time model, although the same electroselectivity effect can be observed to some extent for anions. However, when changing the eluent strength, the eluent pH also frequently changes, leading to different deprotonation equilibria of multivalent anions (e.g. phosphate). This influences the effective charge of the analyte, and by doing so, also influences its retention in a similar way as previously described for the effects of changing temperature.

    In some cases, the use of a small amount of an organic modifier such as methanol, acetonitrile, or acetone in the eluent can make sense:

    • If bacterial contamination has been an issue before, the addition of 5% methanol to the eluent can help prevent future bacterial growth.
    • When samples containing a lot of organic solvent(s) need to be injected and no sample pretreatment such as extraction or matrix elimination (MiPCT-ME) is possible, it is recommended to add a suitable organic modifier to the eluent to ensure that the organic solvent(s) can be properly flushed out of the chromatographic column.
    • When using IC-MS, it is also recommended to add an organic modifier to the eluent to improve the electrospray process.

    Be aware that the addition of organic modifiers will also affect the separation selectivities. For the standard anions, the effect is similar to that observed with increased temperatures: the peak shapes of the polarizable ions such as nitrite, bromide, and nitrate are improved.

    Organic acids on the other hand may react very differently compared to the standard anions, and their reaction also strongly depends on the type of organic modifier used. Sample chromatograms that show the effect of the organic modifier on retention of analytes are shown in the manual for the Metrosep A Supp 10 column.

    Download the Metrosep A Supp 10 column manual here to see example chromatograms showing the effects of organic modifier on analyte retention time.
    For more information about column care, check out our blog post for different tips and tricks.

    The History of Metrohm IC

    Metrohm ion chromatography: bringing top quality and exceptional analytical performance to the lab since 1987. 
    Reference

    [1Haddad, P. R.; Jackson, P. E. Ion Chromatography: Principles and Applications; Journal of chromatography library; Elsevier; Distributors for the U.S. and Canada, Elsevier Science Pub. Co: Amsterdam, Netherlands; New York: New York, NY, USA, 1990.

    Post written by Dr. Vincent Diederich (Jr. Product Manager IC Columns) and Dr. Anne Katharina Riess (Head of Column Division) at Metrohm International Headquarters, Herisau, Switzerland.