Select Page
A History of Chemistry – Part 4

A History of Chemistry – Part 4

This article is the final installment in our four-part series on the history of chemistry. Did you miss the others? Don’t worry – you can find them all here:

The industrialization of electrochemistry

Michael Faraday (1791–1867) had a modest upbringing. He was 14 years old when he began his bookbinding apprenticeship. The young Faraday read a multitude of works that he received for binding and thus educated himself in the sciences as well as in literature and art. A customer at the bookbinding workshop noticed the curious apprentice and mentioned him to his father, who then took Faraday with him to several lectures given by electrochemistry pioneer Humphry Davy. Shortly after, Faraday began working for Davy.

As his assistant, Faraday traveled with Davy across Europe, as they carried out experiments together and met numerous influential scientists. Back in England, Faraday continued training as a chemist and in 1833 became a professor of chemistry. During this time, he investigated the basic laws of electrolysis. These formed the basis of electrochemistry and, in the second half of the century, enabled the development of an electrochemical industry which manufactured products such as chlorine, hydrogen, aluminum, magnesium, sodium, and potassium in its plants located at hydroelectric power stations.

Solvay’s soda ash

The industrial production of soda ash (sodium carbonate) had been possible since the development of the Leblanc process at the end of the 18th century. However, the synthesis required expensive raw materials and produced large amounts of the byproduct hydrogen chloride, which is toxic to the environment in which it is introduced. The produced hydrogen chloride escapes from industrial stacks and kills surrounding vegetation, and is also lethal to aquatic life when added to water.

During the second half of the 19th century, the Belgian Ernest Solvay (1838–1922) occupied himself with the issue. Solvay, who came from an industrialist family, had little formal education but was familiar with chemical procedures thanks to his work at his uncle’s and father’s factories. He developed the process for manufacturing soda ash, which was named after him and only has one byproduct – the harmless calcium chloride (CaCl2).

In 1861, Ernest Solvay and his brother Alfred began soda ash production in their own small factory in Brussels. By continuously adjusting the process, they became increasingly successful and continued to expand. Solvay, who had become very wealthy, became active in furthering scientific research and charitable causes. He also showed his sense of social responsibility in his factories: he established an eight-hour workday, paid holiday leave, a social security system, and a pension for his employees –long before it was legally mandatory.

The majority of the soda ash produced today is still created using the Solvay process.

Would you like to learn more?

Visit our site to read more about the Solvay process and the associated analysis techniques:

The periodic table of elements

There had already been 64 chemical elements had discovered by 1868. However, there was as yet no clear system of regulating which particular atom combinations formed new molecules. Sorting the elements based on their atomic mass had not offered a solution up to this point.

Dmitri Mendeleev (1834–1907) recognized a pattern here: when elements are sorted by their atomic mass, certain elemental properties are periodically repeated – specifically, after every eight elements. Mendeleev therefore retained the arrangement in ascending order of atomic mass, but then also sorted the elements that had the same properties below one another. Whenever properties were repeated after fewer than eight elements, he left open gaps to be filled with elements that had not yet been discovered. Mendeleev arranged the transition elements, which did not fit with his «octet rule», into their own column. This resulted in the first periodic table of elements in 1869.

From aniline to aspirin

Organic chemistry, which now went far beyond the synthesis of artificial urea, had become a significant and rapidly growing industry. The tar dye companies BASF, Bayer, and Hoechst, all of which were founded in the 1860s, grew so rapidly that they were employing thousands of people even before the turn of the century. From the end of the 19th century, the tar dye industry also developed synthetic organic medicinal products. Bayer, for example, patented the byproduct-free synthesis of acetylsalicylic acid in 1898 and marketed the product under the name «Aspirin» from the beginning of the 20th century.

In basic research, chemists began devoting themselves to increasingly complex organic molecules. Emil Fischer (1852–1919) investigated biologically significant molecules such as sugars and amino acids. In 1890, he used glycerin as a basis for synthesizing three sugars: glucose, fructose, and mannose. He later researched proteins. During this period, he discovered new amino acids and shed light on the type of bond which connects them to one another: an amide bond which he gave the name «peptide bond» [1].

First World War: Artificial fertilizer and warfare agents

The use of fertilizer had been common practice throughout agriculture ever since Liebig proved that it would improve yield. The nitrogen needed by plants for growth was added to fertilizers largely in the form of guano. This consists of the weathered excrement of seabirds which forms meter-thick layers over many years, particularly on the beaches of South America, where there are low levels of precipitation. In order to meet the high demand for food – and thus for fertilizer – entire shiploads of guano were being imported to Europe.

However, the import of guano could not keep pace with the rapid growth of population indefinitely, so at the end of the 19th century, researchers began looking for a way to fix nitrogen from the air. The German chemist Fritz Haber (1868–1934) eventually found a solution in 1909 and, with his ammonia synthesis, prevented the famine prophesied in the western world. Unfortunately, this development also enabled Germany’s production of warfare agents during the First World War, as ammonia could be used to create ammonium nitrate, which was then used in ammunition.

Fritz Haber
Carl Bosch

In the Haber-Bosch process, ammonia is produced as a result of a reaction between hydrogen and nitrogen. Fritz Haber achieved synthesis at a high temperature and a high pressure level, and with the aid of a catalyst. Carl Bosch (1874–1940) developed the industrial implementation of the process. For this purpose, he developed specific equipment made of state-of-the-art materials which could withstand both high pressure and temperature levels.

In 1914, the First World War broke out. The nations involved, as well as neutral states, faced blockades in their trade routes and had to become largely self-sufficient. Thanks to governmental structuring and aid, this led to a boom in industrial research across the globe. Numerous reputable scientists were actively involved in the war or supported it, including Fritz Haber, Walther Nernst, and Emil Fischer. In addition to the Haber-Bosch process, the pressure to create innovations that prevailed before and during the war also resulted in the first synthetic rubber as well as mustard gas and the toxic gas phosgene. Chlorine gas, which is produced during ammonia synthesis, was also used as a warfare agent during World War One.

What if . . .

. . . the Haber-Bosch process didn’t exist? Without the nitrogen fertilizer produced using the Haber-Bosch process, there would likely be a lot fewer people on Earth: the population growth of around 1.6 billion in 1900 to nearly 8 billion today would not have been possible without yield improvements brought about by artificial nitrogen fertilizers. Agriculture is still dependent on it today: without this process, the planet would only be able to provide enough food for half the population [2].

Chemistry since WWI

Following the armistice agreement in 1918, the German chemical industry – which had been world-leading until then – lost all of its patents and had to reveal numerous production secrets in order to satisfy the reparation demands of the victorious Allied Powers [3]. The German chemical industry, which had been the world’s largest at the time, had to relinquish its place at the top. Although it experienced another upswing toward the beginning of the Second World War, today’s leading lights in the chemical industry are the USA and France. During the post-war period, polymer chemistry and pharmaceutical chemistry were the fields that saw particular advancement and brought about countless products which are still essentials today. Among these are polymers, including synthetic fibers such as nylon and polyester, and artificially produced vitamins and hormones.

The time around the turn of the 20th century saw rapid advancement in chemistry, both in fundamental research as well as in industry – and to a great extent, it is the relationship between the two which enabled this progress. Numerous processes developed during this time period, including the Haber-Bosch and Solvay processes, have remained the methods of choice in the production of chemicals – in this case ammonia and soda ash, respectively – to this very day. 

References

[1] The Components of Life: From Nucleic Acids to Carbohydrates; 1st ed., Rogers, K., Ed.; Britannica Educational Publishing/Rosen Educational Services: New York, 2011; p 59.

[2] Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W. (2008) Nat. Geosci. 1, 636–639.

[3] Kricheldorf, H. R. Menschen und ihre Materialien: Von der Steinzeit bis heute; 1st ed., Wiley-VCH Verlag & Co. KGaA: Weinheim, 2012; p 111.

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland. Primary research and content contribution done by Stephanie Kappes.

A History of Chemistry – Part 3

A History of Chemistry – Part 3

This article is the third in our four-part series on the history of chemistry. Missed the first two? Don’t worry – you can read both of them here:

Chemistry and society: An explosive pair

It is the early 19th century, and industrialization in Europe is in full swing. Close collaboration between the chemical industry and research – largely in France to start with, then followed by other European countries – is resulting in rapid advances in both sectors. As the chemical industry grows, chemistry is gaining a higher profile in society. The third and fourth parts of our series on the history of chemistry consider the relationship between chemistry, industry, and society from the 19th century onward.

The chemistry of living organisms

One of the most important chemists of the early 19th century is Jöns Jakob Berzelius (1779–1848). This Swedish scientist improved laboratory techniques and developed methods for elemental analysis. By conducting systematic analyses on a large scale, he determined the molecular formulae of virtually all known inorganic compounds and the atomic masses of the elements that had been discovered at that point. He is also the person we have to thank for element symbols: H for hydrogen, O for oxygen, and so on. The only difference between his notation and what we use today is that Berzelius presented element proportions in molecular formulae as superscript characters rather than the subscript characters we see nowadays (e.g., H2O instead of H2O). 

As well as this, he dealt extensively with the chemistry of organisms, something which he dubbed «organic chemistry». Being a proponent of vitalism, Berzelius was convinced that only living organisms were capable of producing organic substances, claiming that «vital force» was necessary for this process. The findings of one of his apprentices, Friedrich Wöhler, would later put a question mark on this hypothesis.

Organic from inorganic – is it possible?

In 1828, Friedrich Wöhler (1800–1882) was the first person who successfully managed to synthesize an organic compound from inorganic reagents: by heating ammonium cyanate, he was able to create its organic isomer, urea. He thus showed that organic substances can be created in a laboratory and that humans are therefore able to imitate and manipulate nature. More and more organic syntheses were made possible as the 19th century progressed.

Wöhler’s synthesis of urea was revolutionary. Today, urea is produced industrially at a rate of 150 million tons per year. Among other things, it is used for dermatological products and in the polymer industry.

Metrohm offers you solutions for the determination of urea and its contaminants. To find out more, visit our industry page «Chemical» and choose «Basic chemicals»:

Wöhler and Liebig: A fruitful friendship

Wöhler formed a friendship with Justus von Liebig (1803–1873) after they settled a dispute about silver fulminate and silver cyanate in 1825. Both substances share the same molecular formula, but the silver fulminate discovered by Liebig is highly explosive, whereas Wöhler’s silver cyanate is not. They eventually ascertained that the type and number of atoms in a compound alone are not enough to characterize a substance – the arrangement of the atoms must also be considered. As well as a spirit of mutual esteem, Liebig and Wöhler thus discovered isomerism. However, determining the molecular structure was not yet possible at that time.

In 1832, the two researchers worked together to formulate their so-called radical theory, which paved the way for modern organic chemistry. This stated that organic substances are composed of atom groups, which they called radicals. These remain unchanged during chemical reactions and are merely exchanged between the reactants. Although the term «radical» now has a different meaning in chemistry, a very similar principle remains until today: functional groups.

Superphosphate revolutionizes agriculture

Around 1840, Liebig, who had studied at the Sorbonne in Paris under such great names as Gay-Lussac and experienced France’s symbiotic relationship between science and industry, turned his back on fundamental research. Instead, he began studying organic chemistry in physiology and agriculture. He realized that plants extract nutrients needed for growth from the ground – with the exception of carbon dioxide, sourced from the air. From his findings, he deduced practical implications which revolutionized agriculture. Through his work, Liebig was the first to establish the need for fertilizer from a scientific point of view. His research also allowed him to determine which nutrients need to be present in fertilizer. This included simple organic compounds, but also inorganic substances such as salts. Based on this knowledge, Liebig developed the first artificial fertilizer, superphosphate, which led to an enormous increase in agricultural yields.

Liebig’s superphosphate fertilizer is still used today. Thanks to new findings, however, there are now a multitude of fertilizers which can provide the necessary nutrients based on the plants and soil conditions.

You can find several free Metrohm applications for agrochemicals available for download here:

Kekulé: dreamer or fibber?

Liebig’s students carried on his legacy through conducting fundamental chemical research. One such example is August Kekulé (1829–1896), who was inspired by Liebig to study chemistry during his time at the University of Giessen instead of becoming an architect as Kekulé’s family had envisaged. In 1858, Kekulé recognized the ability of carbon atoms to bond directly with one another to form chains. This explained how the few elements found in organic matter could form such a diversity of organic substances. In 1865, Kekulé also published findings on the structure of benzene.

According to his own statements, both of Kekulé’s groundbreaking ideas were inspirations from dreams – but the truth behind this is disputed. Kekulé is regarded as an intellectual who disparaged the culture prevailing among chemists and industrialists at the time: a pragmatic, positivistic way of thinking was spreading – it was a blind sense of empiricism which afforded no room for imagination. Christoph Meinel – a historian of chemical sciences – doubts the truth behind the dream anecdote, first told by Kekulé during a speech at a celebration in his honor. He states: «Kekulé’s ambivalent attitude toward the mentality present during this historical period, known as the ‹Gründerzeit›, and toward the patriarchal views of Berlin society resonates only too clearly in his speech. When Kekulé finishes narrating his vision with the words ‹Let’s learn to dream, gentlemen!›, the irony is very difficult to ignore given the prominent profile of those in attendance, who represented Prussian bureaucracy, Gründerzeit industries, and the elitist universities of the time» [1].

Artificial colors: All thanks to benzene

Regardless of whether Kekulé’s anecdote was based on true events or not, his discovery of the benzene structure and its importance to chemistry cannot be denied. Knowledge of organic and aromatic structures enabled systematic synthesis of the same molecules. The work of chemists was increasingly shifting from the isolation of substances from nature to the synthesis of artificial substances. The colorant industry experienced a boom after the discovery of the benzene structure, as this meant that a multitude of artificial colors could now be produced. Indigo production, for example, became an economically significant industrial process.

Colorant syntheses have not lost relevance since their invention in around 1900 – in fact, quite the opposite case. Colorants have been continuously developed for numerous properties and functions. This makes them inherently more complex than their primitive predecessors.

You can find out which analysis technique you need to monitor colorant properties on our industry page «Chemical» under the menu item «Solvents and colorants»: 

Check out the blog next week for the final installment of the series to learn about the advancements of chemistry around World War II.

Reference

[1] Sponsel, R. and Rathsmann-Sponsel, I. Kekulés Traum. Über eine typisch-psychoanalytische Entgleisung Alexander Mitscherlichs über den bedeutenden Naturwissenschaftler und Chemiker August Kekulé (1829-1896), Mitschöpfer der Valenz-, Vollender der Strukturtheorie und Entdecker der Bedeutung des Benzolrings. Alternative Analyse und Deutung aus allgemeiner und integrativer psychologisch-psychotherapeutischer Sicht. http://www.sgipt.org/th_schul/pa/kek/pak_kek0.htm (accessed Aug 15, 2016).

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland. Primary research and content contribution done by Stephanie Kappes.

A History of Chemistry – Part 2

A History of Chemistry – Part 2

This article is the second in our four-part series on the history of chemistry. Missed the first one? Don’t worry – you can read it here: 

The return to atomism and the rise of modern chemistry

In 1808, John Dalton (1766–1844) published his book entitled «A New System of Chemical Philosophy» – a work which marked the birth of modern chemistry. In his theories, Dalton took up Democritus’ conception of atomism. He postulated that atoms were the smallest constituents of matter, and that they could not be divided further, nor created or destroyed in chemical reactions. According to Dalton, all atoms of the same element are identical, but differ from the atoms of other elements. In chemical reactions, atoms combine to form compounds, are separated from one another, or are rearranged relative to other atoms. Because atoms are indivisible according to this model, and therefore only whole atoms can react with one another, Dalton concluded that the elements in a compound are always present in whole-number ratios.

In his atomic theory, Dalton made many hypotheses which have been pivotal to our understanding of chemistry even up to the present day. Some of the premises of his theory are not yet conclusive. For example, Dalton believed that an atom of one element only reacts with exactly one atom of another element. He only deviated from this hypothesis in cases where experimental observations made it absolutely necessary. For instance, he therefore theorized that the composition of water was H-O, meaning that he made subsequent errors, particularly when determining relative atomic masses.

Nevertheless, his atomic theory put chemistry firmly on the right track. From this point onwards, scientific discoveries in chemistry became much more frequent.

From the volume of gases to atomic and molecular masses

In the same year, Joseph Louis Gay-Lussac (1778–1850) established that the volume ratio of gases reacting with one another and their reaction products is always a whole number. For example, Gay-Lussac found that two volumes of hydrogen and one volume of oxygen would react to form water (H2O), and that this gaseous water would in turn occupy two volumes. In 1811, Amedeo Avogadro (1776–1856) then formulated the hypothesis that equal volumes of gas would contain equal numbers of particles, regardless of the substance in question. Avogadro’s hypothesis, however, was not yet widely accepted. It was only in 1860 that his student Stanislao Cannizzaro (1826–1910) managed to convince the scientific community of its validity, after which the hypothesis became known as «Avogadro’s law». This made it possible to determine the molar masses of numerous atoms and molecules, thereby paving the way for progress in chemistry.

Joseph Louis Gay-Lussac
Amedeo Avogadro
Stanislao Cannizzaro

Gay-Lussac bore witness not just to the chemical revolution, but also to the French Revolution, which raged on during his youth in his home country. His father, a wealthy lawyer and prosecutor, was imprisoned and his tutor fled. The French chemist Antoine Laurent de Lavoisier (1743–1794), who in the late 18th century developed the first systematic nomenclature and a standardized terminology for chemistry, was guillotined.

Gay-Lussac, however, benefited from the new order when he was selected to attend the École Polytechnique, an institution of the Revolution. There, his mentors included such high-caliber scientists as the mathematician Pierre Simon de Laplace.

The chemical industry predated the chemical revolution

The late development of atomic theory by Dalton might suggest that a chemical industry could only come to fruition in the 19th and 20th centuries. On the contrary, chemical processes had already been used on an industrial scale since the middle of the 18th century. Despite there not being much in terms of a theoretical understanding of chemistry at the time, the experimental findings of the alchemists made numerous practical applications possible, both in the production and analysis of chemicals. Systematic development and optimization of processes, especially for industry, was nonetheless impossible because of this lack of basic knowledge. As a result, the chemical factories of the 18th century rather resembled enlarged laboratories than the factories we know of today.

The first chemical process that was applied on an industrial scale was the lead chamber process for the production of sulfuric acid. The process had been known since the Middle Ages and had been applied on a large scale in England since 1746. Another important process from the late 18th century onwards was the Leblanc process for the production of soda ash (sodium carbonate), which was required in the textile industry for bleaching linen and was also used in the soap, glass, and paper production industries. Nicolas Leblanc (1742–1806) developed the process in 1791 in a competition run by the French Academy of Sciences, which was desperate to find this kind of process in order to gain independence from expensive imports of natural soda. The Leblanc process became the method of choice for producing sodium carbonate, until the Solvay process was ready for mass production in 1880. However, Leblanc never received his prize money. When it became due, the nation was in the throes of the Revolution, and the Academy was abolished by the French National Convention.

Soda and sulfuric acid are still among the most important products of the chemical industry.

Learn more about the analytical chemistry tools necessary in your production processes on our «Chemical» industry page:

Analytics in the burgeoning chemical industry

In addition to soda and sulfuric acid, the most important products of the chemical industry in the 18th century were hydrochloric acid for chlorine production and chlorine water. All of these products were needed by other industries. For example, one of the applications of soda was in soap production, while chlorine was used for bleaching textiles. Since the purity of chemicals was crucial in the processing industries, they soon developed methods for quality control. Volumetric methods were developed to enable fast, qualitative tests of raw materials: a reagent, which is known to react with the substance being determined, is added to the chemical. The endpoint of the reaction is made visible using a suitable method. In the final step, the quantity of reagent consumed is determined. If an empirically confirmed quantity of reagent was consumed, the chemical was deemed to be suitable. However, quantitative determinations were not yet possible with this rudimentary precursor of titration.

By the end of the 18th century, acid-base titrations, precipitation titrations, and redox titrations were described in the literature. In the early 19th century, Joseph Louis Gay-Lussac, who is often considered to have invented titration, developed new titrimetric analysis methods and made titration easier, faster, and more precise. The developments achieved in the field of titration were almost invariably made in France, where the majority of scientists were employed by the state after the Revolution and were tasked with solving industrial problems that were relevant to the nation. A synthesis of science and industry, as France had demonstrated, was soon to follow throughout the rest of Europe.

As an easy and fast method which can be automated well, titration is a key element in the everyday arsenal of many analytical chemists.

Here, find an overview of free titration applications in a variety of industries available for download:

The rapid development into modern chemistry continued into the 19th century: organic chemistry was born and opened the door for chemistry not just for emulation, but the direct manipulation of nature, for example by using medicines and fertilizers. Learn about this and more in further installments of this series in the coming weeks!

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland. Primary research and content contribution done by Stephanie Kappes.

A History of Chemistry – Part 1

A History of Chemistry – Part 1

Chemistry – a natural science?

For a long time, chemistry was a discipline which lagged behind other natural sciences. The human desire for cheating death and overcoming poverty was just too strong for people to abandon the promises of alchemy and embark into the scientific study itself. 

This article, which is the first in our four-part series on the history of chemistry, will explore how chemistry left behind the mysticism of alchemy.

The origins of chemistry

Humans have been fascinated with chemistry for thousands of years. The first use of chemical processes dates back to the fourth millennium BC and involved extracting metals from mineral ores. However, the shift from chemistry as a mere practical utility into a full-blown scientific debate with its many fields of enquiry happened much later. It wasn’t until the times of Ancient Greece that natural philosophers documented this kind of engagement with nature and the resulting attempts to explain the world as it appears to us.

For example, Democritus (ca. 460–371 BC) was concerned with the structure of matter. Like his mentor Leucippus, he was convinced that matter was composed of tiny, indivisible particles. It was Democritus himself who coined the term «atom», derived from the Greek word «átomos» (in English, «indivisible»).

Alchemy – a secret science

The theoretical principles of the Greek natural philosophers later gave way to alchemy, which, like the modern sciences, aimed at extracting knowledge about nature by conducting experiments.

These ideas were spread from Greece to Egypt and Babylon, and also reached medieval western Europe much later on. However, the progress of alchemy was beset with numerous stumbling blocks for a long time. Some of the basic premises of alchemy, which were not based on observations of nature but on mysticism and superstition, stood in the way of real scientific discoveries. To make things worse, alchemical technical language was inconsistent and, furthermore, remained intentionally vague and incomprehensible in order to exclude outsiders from its secrets.

Regardless of their faults, the alchemists of the Middle Ages had – for their time – a solid basic understanding of science. They learned to experiment with materials, and they understood better than anyone else how to isolate pure substances and constituents of matter, and to create new mixtures. The alchemists’ abilities qualified them to work in mines, mints, as blacksmiths, and in apothecaries.

Since human beings learned how to isolate bronze, numerous additional metals have been discovered and are used in various applications. These metals have to meet certain requirements according to their usage.

A selection of free application notes for metal analysis can be found here:

During their tenure in these positions, they isolated hitherto unknown substances, improved food preservation methods, and created alloys – yet scientific discoveries remained few and far between. The basic foundations of alchemy were not quite ready to give rise to a comprehensive, systematic approach to chemistry.

Cartesian doubt

Objective research into the natural world became possible for the first time when the thinkers of the Renaissance began to question everything which was not clear as day and obvious beyond a shadow of a doubt. 

The French philosopher René Descartes (1596–1650) revolutionized the natural sciences with his method of doubt, whereby assumptions could be scrutinized in order to generate knowledge systematically. Even the teachings of religious authorities were thrown into doubt, which at that time was a massive taboo. Descartes also advocated mathematics as the basis of all natural sciences, allowing us to describe and explain nature not only qualitatively, but also quantitatively. 

In the field of physics, Descartes’ ideas gained quick acceptance and were seized on and developed further by other scientists, including Isaac Newton (1643–1727). The work of Descartes and Newton was the catalyst for rapid progress in physics and astronomy, yet chemistry still lagged behind: Newton himself spent his life in pursuit of the «philosopher’s stone» – a material which could supposedly turn base metals into gold by the process known as «transmutation».

 

The transition from alchemy to chemistry

Robert Boyle (1627–1692) was a pioneer in modern chemistry. Among the first to attempt to consolidate the alchemists’ knowledge concerning material properties and reactions into a comprehensive theory, he demystified chemistry along with its nomenclature.

It was Boyle who defined the «element» as the end product of analysis, i.e., as pure substance. His rational approach was, up until that time, unique in the field of chemistry. He published his findings in his groundbreaking 1661 work «The Sceptical Chymist». This publication heralded the transition from alchemy into chemistry, which can be seen in the title of the book as the prefix «al» is dropped. Nevertheless, Boyle practiced alchemy until the end of his life and continued to believe in transmutation. The ultimate breakthrough of chemistry had to wait until the early 19th century.

Digression: Electrochemistry

In 1800, Alessandro Volta (1745–1827) developed the first battery: the voltaic pile. With this invention, the history of electrochemistry had begun. The pile consisted of stacked, alternating copper and zinc plates, each separated from the next by fabric soaked in electrolyte solution. Humphry Davy (1778–1829) used the pile in his electrochemical experiments and in 1807 and 1808 discovered numerous elements (including sodium, potassium, calcium, and magnesium) by electrolyzing saline solutions or hot, molten salts.

Alessandro Volta (L) and Humphry Davy (R).

Davy also isolated chlorine, which reacts with water to form hydrogen chloride, through the electrolysis of saline solution. Until this time, it was assumed that oxygen was the key component of all acids. However since no oxygen is found in hydrogen chloride, Davy discovered that it was hydrogen which gave a compound the properties of an acid.

In the next installment, we will cover the return to atomism and the rise of modern chemistry between the 18th and 19th centuries. Stay tuned!

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland. Primary research and content contribution done by Stephanie Kappes.

Upgrade your lab skills online

Upgrade your lab skills online

At the moment, times are strange, as many people are kept home to keep each other safe and healthy. Some of you are still able to work in your office or laboratories, but others are trying to find constructive ways to keep focused and stay connected.

During this time, one way to keep your skills sharp, or even to learn new ones, is by watching informative webinars. Level up in your laboratory expertise!

Below, we have a selection of some excellent free webinars from Metrohm to keep you on top of your game – no matter which technique you use. Application examples, practical information on handling, care, and troubleshooting, and more – our webinars provide very useful information dealing with various techniques and industries.

We offer several on-demand webinars about subjects such as the fundamentals of titration, troubleshooting, and the synergy between titration and near-infrared spectroscopy (also see our related blog post on this topic).

This important segment of titration is especially important for accurate moisture determinations.

On-demand webinars available include fundamentals and troubleshooting, as well as others for more in-depth knowledge.

NIRS is a fast, nondestructive, reagent-free technique, used in several markets (e.g., pharmaceuticals, petrochemicals, polymers, and personal care).

We have many interesting webinars not only focused on these industries, but also for quality control, process analytical technology (PAT),  and about the combination with the primary method of titration (also see our related blog post on this topic).

Raman spectroscopy is a handy tool for quick, reagent-free identification of raw materials, illicit substances, and hazardous chemicals – even from a distance.

Watch this webinar to learn how accurate, reliable, and portable screening tools can help to detect substandard and falsified medical products.

Aside from providing information about how Metrohm ion chromatography (IC) can be used for multiple applications in different markets, we also offer free webinars about sample preparation and automatic calibration to help save you valuable time when you’re back in the lab!

The measurement of pH is one of the most commonly performed determinations in chemical analysis. Why not learn some of the basics, or perhaps some troubleshooting techniques with our free webinars to impress your colleagues? If you are looking to avoid the most common mistakes in pH measurement, be sure to check out our blog post as well.

Our electrochemistry webinars cover a variety of topics to enhance your knowledge in this area. From corrosion analysis to electrocatalysis research, we have you covered.

If you’re more interested in screen-printed electrodes (SPEs) and biosensing applications, we have something for you, too!

I hope you find these webinars informative. If you’re interested in further educational opportunities from Metrohm, check out the Metrohm Academy. Stay safe, stay healthy, and always keep learning!

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.