Select Page
Supercharge your battery research – Part 2

Supercharge your battery research – Part 2

Battery technology has come a long way since the rudimentary voltaic pile was developed over two centuries ago. The breakthrough innovation of the lithium ion battery and its subsequent improvements has increased the use and accessibility of electronics, particularly in the consumer market. Electronics are more portable, affordable, and thanks to rechargeable or secondary batteries, they are becoming more sustainable.

Expansion of application possibilities is another reason that energy storage research, particularly batteries, is currently a hot topic. For example, only a decade ago drones were the domain of the military industrial complex, and now a drone with a camera is a standard part of nearly any successful photographer or influencer’s gear. Thanks to an improved battery life and more cost-efficient materials, a drone now has an affordable price tag for a larger segment of the civilian population.

This kind of disruption is happening in larger, more profitable markets as well. Tesla, a newsworthy brand thanks to their technological innovations and public relations, still has a small, albeit increasing, market share of the overall automotive market. Their success has challenged other established brands to recognize that a change from conventional combustion engines can be lucrative. Volvo and Ford are committed to be «fully electric» by 2030 [1]. General Motors (GM) has committed to not only be electric by 2035, but for their business to be carbon neutral by 2040 [2].

The automotive market is a high profile example of an industry that will drastically retool their sector—from manufacturing to sales—and this will happen across many other industries as there is a greater focus on climate change and renewable energy sources from governments and consumers alike. Accurate and scalable R&D will be required to make these transformations possible, and the hunt for improved energy storage solutions is at the heart of these changes.

Electrochemistry was the key to the discovery of energy storage and is the natural technique of choice for future innovations.

Electrochemical characterization techniques for lithium ion batteries

In part one of this series, we introduced various techniques to analyze the composition and purity of electrode materials and lithium salts, in addition to accurate water content determination in the battery materials.

In this article we highlight techniques that will allow the characterization of multiple attributes of the electrochemical behavior of Li-ion batteries using a high precision potentiostat/galvanostat. In some cases, the difference between techniques is due to performing the experiment in a different mode (i.e., potentiostatic or galvanostatic), and the additional information gathered provides a more complete picture of battery behavior.

Galvanostatic Intermittent Titration Technique (GITT)

One of the first techniques available to researchers exploring the properties of battery electrode materials is the Galvanostatic Intermittent Titration Technique (GITT). Usually conducted on a half-cell, this technique is a series of current perturbations followed by a relaxation time, which provides information about the thermodynamic properties and electrode materials including the critical diffusion co-efficient. All of this information gives a better understanding of the electrochemical behavior that can be expected by the materials.

If you’re looking for more information on this subject, download our free application note AN-BAT-003.

Potentiostatic Intermittent Titration Technique (PITT)

Potentiostatic Intermittent Titration Technique (PITT) is similar to the GITT technique detailed above, but the PGSTAT is operated in potentiostatic mode. A series of potential step perturbations is applied to the system, and current is measured as a function of time. Both GITT and PITT are capable of accurately determining the diffusion coefficient.

When using a PGSTAT in galvanostatic mode you can also characterize the performance of Li-ion batteries by using different current rates and charging and discharging during various cycles, known colloquially as «cycling». With this technique researchers can understand the rate performance of the Li-ion battery, its capacity, and the associated power and energy density. This is the most commonly used technique in battery research. A constant current constant voltage (CCCV) procedure is usually applied in order to make sure that a battery is fully charged, while avoiding any battery overcharge.

Learn more about characterizing the performance of lithium ion batteries with cycling by downloading our free application note AN-BAT-002.

CCCV is the industry standard for Li-ion battery charging, and PGSTAT operates in both galvanostatic and potentiostatic mode for this measurement. Galvanostatic cycling is performed within a safe potential window at which the electrolyte is stable. Any slight deviation from the potential cutoff may result in poor cycle life.

Voltage profile of a 18650 Li-ion battery, cycled at ~ C/15 (left), and its corresponding dQ/dV versus V plot (right). The corresponding peaks and plateaus are marked in the figures.

Electrochemical Impedance Spectroscopy (EIS)

Electrochemical Impedance Spectroscopy (EIS) provides additional data and therefore greater insight into the battery’s behavior and potential performance by using galvanostatic charge/discharge cycling and then adding in the most powerful technique that is being used extensively in current battery research. With EIS, the highly dynamic behavior of a battery and the diffusion of ions at the interfaces can be characterized. In a single experimental procedure encompassing a broad range of frequencies, the influence of the governing physical and chemical phenomena may be isolated and distinguished at a given frequency range and state of charge. With EIS it is possible to measure the internal impedance of the battery and model it using the equivalent circuit and understand the contribution of the battery components to the total impedance of the cell.

For EIS determination of batteries it is important to use 4-terminal sensing to avoid the contribution of wires to overall impedance. This is important for any low impedance electrochemical system. Learn more about this research by downloading our free Application Notes AN-EC-013 and AN-BAT-008.

With EIS, it is possible to determine the through-plane tortuosity of battery electrodes, which along with overall electrolyte conductivity, the transference number of a Li-ion of battery electrolyte, and diffusion coefficient of electrolyte gives a good indication of the practicality of certain battery chemistry for high power applications. In addition, the mass transport limitation of the battery separator and its ionic conductivity plays a crucial role in overall performance of the batteries.

By determining the MacMullin number, researchers can determine the quality of the separators for their application in certain Li-ion cells.

Nyquist plot: Negative imaginary part of impedance as a function of the real part of impedance for an 18650 cell.

Download our free Application Notes below for more information on these subjects.

Download our free white paper «A Guide to Li-ion Battery Research and Development» written by electrochemical instrument innovators at Metrohm Autolab. This white paper provides additional information about applicable electrochemical techniques and provides useful definitions to terminologies that are relevant to Li-ion battery research and development.


Free white paper:

A Guide to Li-ion Battery Research and Development

Post written by Dr. Reza Fathi, Product Specialist at Metrohm Autolab, Utrecht, The Netherlands.

How much do pipes rust in a year?

How much do pipes rust in a year?

Why is corrosion important?

According to the Association of Materials Protection and Performance (AMPP) the total estimated annual cost of corrosion is as high as 3.5% of a country’s GDP [1]. An AMPP international study [2] found that in the United States alone, the corrosion related cost can be as high as $1.4 billion USD annually in the oil and gas exploration and production sector. This figure climbs even higher, up to $40 billion USD for gas and drinking water distribution plus sewer systems. This is an unavoidable problem with a high cost to bear.

Even though the corrosion itself isn’t unavoidable, it can be controlled by using the right material in the right place. Using a reliable test method that evaluates the material’s resistance against corrosion and predicts its potential failure is of the utmost importance. This test method should also be cost-effective and practicable.

What is corrosion?

Corrosion refers to a naturally occurring process that involves the deterioration or degradation of metals and alloys through a chemical reaction. The corrosion rate is highly dependent on the type of material, ambient temperature, contaminants/impurities, and other environmental factors. Most corrosion phenomena are electrochemical in nature and consist of at least two reactions on the surface of the metals or alloys.

For example:

These electrochemical process require three main elements:

  • Anode: where the metal corrosion occurs.
  • Cathode: the electrical conductor, which is not consumed during the corrosion process in the real-life electrochemical cell configuration.
  • Electrolyte: the corrosive medium that enables the transfer of electrons between the anode and the cathode.

Depending on the materials and environment, corrosion can occur in different ways, such as uniform corrosion, pitting corrosion, crevice corrosion, galvanic corrosion, or microbiologically induced corrosion to name just a few. Learn more about the different types of corrosion in our free white paper.

This white paper also includes details about relevant electrochemical techniques including Linear Sweep Voltammetry (LSV), Electrochemical Impedance Spectroscopy (EIS), and Electrochemical Noise (ECN or ZRA). These techniques allow for the exploration of corrosion mechanisms, the behavior of different materials, the rate at which corrosion occurs, and also to determine the suitability of the corrosion protection solutions such as protective coatings and inhibitors, among others.

Find out more about these subjects individually with our selection of free Application Notes (AN).
Calculation of corrosion parameters with NOVA – Tafel plot corresponding to corrosion behavior of iron in seawater. (Click to enlarge)

Creating pipe-flow conditions in your corrosion laboratory

Internal corrosion is the most problematic cause of pipeline failure. To understand the fundamentals about corrosion failure and its root causes within pipelines, a similar environment should be created in the lab.

The Rotating Cylinder Electrode (RCE) is an integral part of creating hydrodynamic electrochemical experiments in the lab that create turbulent flow conditions which realistically simulate the situation for liquids flowing through pipes. The RCE can be used with most electrochemical techniques such as chronoamperometry, chronopotentiometry, and potential sweep.

Study of the corrosion rate as a function of rotation speed (convective flux) is one of the most common applications for the RCE. Corrosion studies can be performed using linear or cyclic polarization measurements (LP, DPD, CP), electrochemical impedance spectroscopy (EIS), and electrochemical noise (ECN) with respect to the rotation speed.

Results obtained by electrochemical methods are more accurate and are obtained much faster than conventional corrosion investigation methods (e.g. salt spray), providing more efficiency and productivity to any corrosion measurement laboratory. Learn about the RCE and how to simulate realistic pipe-flow conditions in the lab combined with electrochemical corrosion techniques in our free white paper.

One typical method in electrochemical corrosion studies is linear polarization (LP). With this method, it is possible to evaluate the corrosion behavior of a sample under pipe-flow (i.e. turbulent flow) conditions and learn about the corrosion rate of the sample at a specific flow rate.

Metrohm offers two Application Notes that use this technique specifically:

The Tafel plot obtained from LP measurement gives an indication of the corrosion potential. Using dedicated analysis tools in the NOVA software from Metrohm Autolab, the corrosion rate analysis can be performed and corrosion rate can be calculated, giving an indication of how much the pipe will rust in a year (in mm/year) under given conditions. Once this information is available for a certain material, a more corrosion resistive environment can be developed by applying a certain coating or a corrosion inhibitor.

Tafel plot created by Metrohm Autolab’s NOVA software. Blue line is measured without corrosion inhibitor and red line is measured with corrosion inhibitor.
Tafel plot created by Metrohm Autolab’s NOVA software corresponding to the measurements done in quiescent electrolyte (blue) and under 500 RPM rotation rate (red). All other experimental parameters were kept the same.

A second evaluation can be performed to learn how much the pipe will rust in a year, under these resistive conditions. In the example below, under standard conditions, the corrosion rate of carbon steel is measured at 0.25 mm/yr. However, when a specific corrosion inhibitor is used (tryptamine in this case), the performance is significantly improved and the corrosion rate drops to 0.065 mm/yr. These results can be achieved in a matter of minutes by using electrochemical methods, whereas by conventional methods (e.g., salt spray chamber combined with weight loss analysis), it takes up to a few months to conclude the results. That is a huge difference in efficiency!

Corrosion Parameter No Inhibitor With Inhibitor
Ecorr (V) from linear regression -0.479 -0.392
Ecorr (V) from Tafel analysis -0.482 -0.396
Rp (Ω) from linear regression 42.62 135.96
Rp (Ω) from Tafel analysis 43.32 136.39
Corrosion rate (mm/year) from Tafel analysis 0.25 0.065
Linear regression and Tafel analysis data resulting from experiments with and without corrosion inhibitor.


Understanding the corrosion behavior of a material under real-life conditions helps manufacturers to more quickly optimize the material design in terms of corrosion resistance, either by using a more suitable material for the pipes or by using adequate corrosion protection methods (i.e., coatings or corrosion inhibitors), which results in significant cost savings and safer operation.

Post written by Dr. Reza Fathi, Product Specialist at Metrohm Autolab, Utrecht, The Netherlands.

Developing the electrochemical sensors of your dreams

Developing the electrochemical sensors of your dreams

«Measurement is the first step that leads to control and ultimately to improvement. If you can’t measure something, you can’t understand it. If you can’t understand it, you can’t control it. If you can’t control it, you can’t improve it.»
H. James Harrington


The statement above relates very well to the demand to measure more and more about our lives—one option available to achieve this improvement is through the development of electrochemical sensors. Sensor manufacturing is in high demand and is expected to grow exponentially in the coming years.

Everything around us gives valuable information, including the chance to discover and the ability to know how we need to act. Developing sensors opens up new opportunities to develop and customize powerful and accurate solutions for specific applications in multiple fields, as well as being able to monitor different parameters outside the laboratory on the spot.

Electrochemical sensors and biosensors that are developed in small sensor strips allow for many measurement and monitoring possibilities. Sensors with new strategies have evolved by working with new materials, substrates, and formats that improve their accuracy, miniaturization, and portability in response to new analytical paradigms in various markets.

Why are electrochemical sensors needed?

Electrochemical sensors are a sensitive, fast, accurate, and cost-effective solution for point-of-care measurements. Such characteristics make these solutions suitable for integration into various monitoring or automation systems which, combined with a data communication structure, can generate considerable advances in the field of biosensing, creating new and important possibilities for the market as practical and future-proof solutions.

The latest advances in the miniaturization of electrochemical sensors is another reason for their growing use and popularity. These portable and simple formats are geared towards the end user—technical and non-technical—to obtain results in their daily work. This makes electrochemistry very attractive to anyone thinking of taking an idea or research to the next level and commercializing their findings.

This progress makes the development of electrochemical sensors one of the most active areas of analytical electrochemistry. These sensors are capable of providing information with superior features such as: real-time data generation, disposability, high accuracy, or wide-range linearity that make these small sensor strips an advanced alternative to conventional, bulky and expensive analytical instruments.

Multiple possibilities for production of electrochemical sensors

Your dream sensor is now possible thanks to expert manufacturing from Metrohm DropSens that allows customization and production according to your required quantity and specifications. Using an innovative and experienced production process, large quantities of customized sensors can be produced while maintaining high product quality and scalability stability as well as an attractive price-performance ratio.

Optimized design

Metrohm DropSens R&D experts understand the application concept in depth. The engineering and design departments assist in the development process to implement a final prototype, always finding a solution in which all specifications converge.


Custom-made solutions

The development of these sensors allows their miniaturization while at the same time allowing the possibility of modifications in terms of spatial distribution, shape, area, substrate, or the use of a wide range of materials, to name just a few. In addition, flexible sensors, textile sensors, biosensors or other types of solutions can be manufactured to suit the biochemical and electronic process needs of each individual application.


 Manufacture on demand

Take advantage of this capacity to produce custom-made electrochemical sensors on demand efficiently and quickly, regardless of the quantity ordered, meeting future needs without ever running out of supply.


High performance market-ready solutions

Be the first to bring a sensor to market, avoiding long processes and an abundance of partners. Count on the fast and professional manufacturing capability from a company positioned directly in the launch and production of electrochemical sensors to the market.


The highest quality standards

Production is carried out with the highest quality materials, printing, and finishing. In addition, the solutions are approved by quality management systems, which allows the highest levels of reliability and stability to be achieved in each product, guaranteeing its scalability.

From small-scale prototyping to large-scale sensor production, Metrohm DropSens offers support throughout the entire process: initial conceptualization, in-depth prototype design, and helping to achieve results that meet your goals.

This expert manufacturing is backed by the global support of Metrohm’s extensive worldwide network of partners. With more than 75 years of experience, Metrohm offers the highest standards of product and service quality, providing all you need for chemical analysis support.

Sensors for infinite uses

Progress and improvement cannot be adequately defined without the use of sensors. Everything can be measured (and usually quantified), which gives many opportunities to grow. State-of-the-art sensors based on the most recent scientific accomplishments excel in their customer-friendliness, allowing sensors to become part of everyday life as they are accessible to more people. Furthermore, the development of these decentralized devices can leverage R&D in many different industry sectors by addressing their specific applications and needs, giving them the option to reach the market.

The measurement of human health, pollution, information about foods and beverages, environmental analysis, water contamination, illicit drugs, or viruses, among other things, can be performed with electrochemical techniques and solutions. Sensors also play a fundamental role in industrial sectors such as agriculture and livestock farming, being able to measure an infinite number of parameters applicable to their improvement and development.

Another aspect to be taken into account regarding the development and growth of relevant sectors is the capacity of sensors for continuous electrochemical monitoring of different biomarkers. Combined with automated wireless data communication systems, this has represented a considerable advance in the field of biosensing towards new market possibilities.

Certified by ISO 13485 for the manufacture of sensors for medical devices

In the clinical setting, point-of-care (POC) testing dominates as an end-user application. The main areas of development focus especially on POCs for home monitoring of chronic diseases and POC testing of infectious pathologies, among others.

The COVID-19 pandemic, caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a threat to global public health. Therefore, the development of a rapid, accurate, and easy-to-apply diagnostic system for the detection of the virus has become crucial to control the outbreak of infection and monitor the progression of the disease. 

Metrohm DropSens manufactures electrochemical sensors under ISO 13485 certification, which attests to the ability to provide production that consistently meets customer and regulatory requirements applicable to medical devices and related services.

The sectors of medical and diagnostic services are driven by a strong interest in rapid point-of-care testing and monitoring devices. In addition, the integration of biosensors into medical diagnostic equipment will offer endless opportunities for the market for prevention and control of the spread of disease.

Moreover, the proliferation of biosensors employing electrochemical sensing technology has been gaining ground due to the strong demand for rapid and non-invasive POC applications. These are market-ready sensors that can be used by anyone.

Electrochemical test strips are a suitable canvas and format for the creation of a motorized diagnostic and testing system in this area and can provide a solution to these new analytical paradigms. The development of non-invasive sensors for decentralized and continuous monitoring has received a great deal of attention from researchers in different industries for painless analysis of important health parameters.

These are extraordinary times for sensor development

We constantly look for ways to mark our progress, and having the ability to measure parameters is one way to achieve this. The development of electrochemical sensors opens up a wealth of possibilities, and thanks to the customization and mass production capabilities of Metrohm DropSens, you will be able to produce high quality electrochemical devices that are tailored to specific applications. This production process is designed to meet the long-standing market demand for end-user-oriented sensor solutions with features such as: portability, wireless functionality, and simple usability without any loss in measurement accuracy.

Electrochemical sensors, based on small sensor strips, are now simpler, smarter, more user-oriented, and cheaper than conventional electrodes, which rely on cleaning or recovery tasks and have lower reproducibility in many areas of analysis. These devices are also characterized by the ability to acquire data in real time, which, combined with portability and ubiquitous availability, makes them practical and powerful tools for measurement purposes. In addition, they can provide an alternative solution for applications where complexity is involved, as they can be developed to adapt to infinite specifications.

Electrochemical sensors guarantee optimum quality, excellent measuring accuracy, and use perfectly bonded materials, prints, and substrates. They can be developed in various formats and are reproducible on flexible or even wearable materials, always maintaining good conductivity and preserving the correct alignment of the different sensor elements in all cases.

Metrohm DropSens is able to produce these electrochemical sensors in large quantities on a customized basis while still maintaining all the benefits and features scaled up from the customer-developed application. This is possible while guaranteeing market-ready production, an efficient price-performance ratio, and no risk of stock-outs – always with continuous global and specialized support service. Contact us to make your dream sensor a reality!

Dream of your sensor

and together we will make it true

Post written by Belén Castedo González, Marketing Communication at Metrohm DropSens, Oviedo (Asturias), Spain.

Decarbonizing chemical processes with Thor

Decarbonizing chemical processes with Thor

The chemical manufacturing industry consumes approximately 10% of the energy produced worldwide and is responsible for more than 5% of global carbon emissions. Nearly all chemicals are synthesized using thermal energy generated by fossil fuel combustion, leading to the significant carbon footprint from this sector. What if there was a way to reduce the carbon footprint without requiring significant amounts of energy or high costs? That is where the 2021 Metrohm Young Chemist Award winner, Ryan Jansonius, comes in.

Ryan Jansonius is a Ph.D. candidate at the University of British Columbia and a co-founder of ThorTech. He received his BSc (Hons) in Chemistry from the University of Calgary in 2016. He then went on to work at the Automotive Fuel Cell Cooperation, a subsidiary of Ford and Daimler, developing ion exchange membranes for hydrogen fuel cell vehicles. His research in the Berlinguette group at UBC has centered around developing technologies that use inexpensive and abundant renewable electricity to drive otherwise environmentally costly chemical transformations. ThorTech is bringing to market a unique membrane reactor technology that uses water and electricity to hydrogenate molecules relevant to the biofuel, pharmaceutical, and specialty chemical industries.

The Metrohm Young Chemist Award

Metrohm values the spirit of innovation and believes in the value of novel research performed by pioneering young scientists. At Metrohm USA, the tradition of holding a yearly contest for early career researchers has gone on for nearly a decade! Every year, between 50 and 75 entries are received to try and win a grand prize of $10,000 USD.

A panel of judges from inside and outside of the company reviews the submissions and scores the applicants’ responses to the questions on the application. Finalists are then asked a series of follow up questions from the judges and asked to summarize their role in the work and its future potential. A winner is chosen, who then presents their research at PITTCON. Watch Ryan’s presentation at PITTCON 2021 below!

Past winners of the MYCA  have gone on to continue their research and broaden their horizons using the prize money to do things they otherwise would have had to pass on.

Learn more about the Metrohm Young Chemist Award here! Applicants do not have to use Metrohm instrumentation to be considered, and it plays no part in winner selection.

Decarbonizing the chemical industry

Ryan’s doctoral research at UBC focuses on finding ways to decarbonize chemical manufacturing. The production of fuels, plastics, fertilizers, pharmaceuticals, and specialty chemicals consumes a significant amount of energy and is responsible for 5% of all greenhouse gas emissions. By developing ways to produce these useful chemicals using only abundant feedstocks and renewable electricity, there is an opportunity to offset these emissions.

To decarbonize chemical processes, Ryan and his group are developing a reactor that can use renewable electricity to drive chemical reactions that would otherwise require fossil fuel inputs. The type of reaction they are targeting is called «hydrogenation», and it is used in about 25% of all chemical manufacturing across several industries. Hydrogenation is a simple chemical process where hydrogen atoms are added to an unsaturated chemical feedstock.

Normally, this requires high pressure, high temperature hydrogen gas to achieve, which is extremely dangerous to handle. Conventional technology requires capital intensive hydrogenation plants for this purpose and has not changed for nearly a century.

The reactor, called «Thor», produces hydrogen through the electrolysis of water, which then passes through a thin membrane and hydrogenates an organic feedstock. What makes Thor unique is the use of a palladium membrane as a cathode, hydrogen-selective membrane, and hydrogenation catalyst simultaneously. This architecture enables the electrolysis to proceed in aqueous electrolyte while hydrogenation is mediated in organic solvent. Both reactions proceed efficiently as a result.

Team Thor (left to right): Ryan Jansonius, Natalie LeSage, Roxanna Delima, Mia Stankovic. Not pictured: Arthur Fink, Camden Hunt, Aoxue Huang, and Aiko Kurimoto. The technological innovation is defined by the large number of female group members, as shown by their lead authorship on several peer-reviewed articles (listed at the bottom of the page).

This process circumvents the use of fossil-derived H2, and the natural gas heaters required for conventional thermochemical hydrogenation reactors used industrially today. The ultimate goal is to use Thor to produce renewable diesel, pharmaceuticals, and a host of bio-derived specialty chemicals in a way that is cleaner, safer, and more cost-effective than conventional methods.

The legend of Thor(Tech)

Where did the name «Thor» originate?

Studying the palladium-hydrogen system led the Berlinguette research group to develop the Thor reactor in 2018. The inventor of the technology, Rebecca Sherbo (currently a postdoctoral fellow at Harvard), came up with this idea after studying the bizarre hydrogen absorption properties of palladium. The first setup and proof of concept was a tandem hydrogenation oxidation reactor. Now, instead of the paired electrolysis method they use water hydrolysis as a hydrogen source, but kept the great name to remind them of the history.

What is ThorTech? Ryan and his research team explain their project in a nutshell:

Earlier iterations of the prototype reactor developed by Ryan’s research group at UBC.

Potential commercial impact of greener technology

Thor solves key challenges with conventional hydrogenation methods by using water as a hydrogen source. Therefore, pressurized H2 gas is no longer required, which is challenging to handle and store. The reactivity of hydrogen atoms delivered to the organic feedstock in the reactor is on the order of hundreds of atmospheres. Hydrogen sourced from water can therefore be used to hydrogenate organic molecules without the use of dangerous reagents or high temperatures. Using electricity as the only energy input also enables the device to be carbon neutral if is coupled to a renewable electricity source.

A close-up view of the Thor benchtop reactor.
An expanded view of the internal parts in the flow cell.

Why choose Metrohm?

So, why choose Metrohm over other providers? I asked Ryan about his experiences with our line of potentiostats for his doctoral research in the Berlinguette lab group at UBC.

«All of the potentiostats that we use are Metrohm potentiostats in the lab. The only piece of fancy equipment or scientific equipment we need to run it [Thor] is a potentiostat. We have one big multichannel potentiostat with five or six individual channels in it, and we run all of our reactions off of that.»

Ryan Jansonius

MYCA 2021 Winner and Ph.D. Candidate, University of British Columbia

Learn more about Metrohm’s electrochemical instruments on our website!

A Metrohm Autolab Multichannel instrument. Each channel is a separate potentiostat/galvanostat module, allowing you to perform up to twelve measurements on just as many individual electrochemical cells.

«The thing that sets them apart from other potentiostats I’ve used is that the user interface is really good. The Metrohm software has a lot of default procedures and makes making custom procedures almost brainless, which is great.

You want to use your brain for the hard stuff, not the “set up the instrument” stuff.»

Ryan Jansonius

MYCA 2021 Winner and Ph.D. Candidate, University of British Columbia

We wholeheartedly agree! For more information about potentiostats from Metrohm Autolab, visit the website.

The next steps

The Thor team is currently working to develop membranes that use less palladium, designing flow cells to increase reaction rates and efficiency, and screening catalysts that enable a broader scope of feedstocks to be hydrogenated in Thor.

Dr. Aiko Kurimoto, a postdoctoral fellow on the Thor team has shown that depositing thin layers of different catalysts on the palladium cathode leads to substantially higher reactivities. This work was published in Angewandte Chemie (2021).

Of course, the COVID-19 pandemic has influenced research activities across the globe, and it is no different for our Metrohm Young Chemist Award winner. After spending nearly six months outside of the lab, social distancing measures made it difficult for Ryan to finish up his doctoral work. If an experiment failed, an entire week of work could be lost because of the need to stagger attendance. Ultimately, the team moved to a larger unoccupied space close by in order to continue their work.

How will the MYCA prize money be used?

After completing his doctorate, Ryan had planned to put all efforts into his start-up company ThorTech based on the research he contributed to. However, the transition from graduate researcher to start-up co-founder is quite an expensive one.

«It [the prize] couldn’t have come at a better time! I’m just now starting to appreciate how expensive transitioning [to industry] is.»

Ryan Jansonius

MYCA 2021 Winner and Ph.D. Candidate, University of British Columbia

He wants to take some time off to work on the company before investment capital comes in, and the prize money will be instrumental to help him do this. Additionally, a bit of rest and recharge is needed after finishing his degree!

Ryan defends his Ph.D. at the University of British Columbia in May 2021, and we wish him the very best of luck. To learn more about the research of Ryan and his team, selected peer-reviewed literature is provided below.

Selected literature for further reading:

  • Sherbo, R.S.; Delima, R.S.; Chiykowski, V.A.; et al. Complete electron economy by pairing electrolysis with hydrogenation. Nat. Catal. 2018, 1, 501–507.

    This is the first article published on the Thor reactor.

  • Sherbo, R.S.; Kurimoto, A.; Brown, C.M.; et al. Efficient Electrocatalytic Hydrogenation with a Palladium Membrane Reactor. JACS 2019, 141, 7815–782.

    Thor enables ~65% more energy efficient hydrogenation reactions than can be achieved using normal electrochemical hydrogenation methods.

  • Delima, R.S.; Sherbo, R.S.; Dvorak, D.J.; et al. Supported palladium membrane reactor architecture for electrocatalytic hydrogenation. J. Mater. Chem. A 2019, 7, 26586–26595.

    This article describes a design for palladium membranes that uses 25x less palladium than conventional Pd foils.

  • Jansonius, R.P.; Kurimoto, A.; Marelli, A.M.; et al. Hydrogenation without H2 Using a Palladium Membrane Flow Cell. Cell Reports Physical Science, 2020, 1, 100105.

    This article shows a designed and validated scalable flow cell architecture, enabling 15x faster, and 2x more efficient hydrogenation reactions.

  • Huang, A.; Cao, Y.; Delima, R.S.; et al. Electrolysis Can Be Used to Resolve Hydrogenation Pathways at Palladium Surfaces in a Membrane Reactor. JACS Au 2021, 1, 336-343.

    Thor can also be used to resolve complex reaction mechanisms by depositing nanoparticles on the surface of the membrane.

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.

Special thanks go to Ryan Jansonius for taking the time before his doctoral defense to contribute to this article.

«Analyze This»: 2020 in review

«Analyze This»: 2020 in review

I wanted to end 2020 by thanking all of you for making «Analyze This» – the Metrohm blog for chemists such a success! For our 60th blog post, I’d like to look back and focus on the wealth of interesting topics we have published this year. There is truly something for everyone: it doesn’t matter whether your lab focuses on titration or spectroscopic techniques, or analyzes water samples or illicit substances – we’ve got you covered! If you’re looking to answer your most burning chemical analysis questions, we have FAQs and other series full of advice from the experts. Or if you’re just in the mood to learn something new in a few minutes, there are several posts about the chemical world to discover.

We love to hear back from you as well. Leaving comments on your favorite blog posts or contacting us through social media are great ways to voice your opinion—we at Metrohm are here for you!

Finally, I wish you and your families a safe, restful holiday season. «Analyze This» will return on January 11, 2021, so subscribe if you haven’t already done so, and bookmark this page for an overview of all of our articles grouped by topic!

Stay healthy, and stay curious.

Best wishes,

Dr. Alyson Lanciki, Scientific Editor, Metrohm AG

Quickly jump directly to any section by clicking a topic:

Customer Stories

We are curious by nature, and enjoy hearing about the variety of projects where our products are being used! For some examples of interesting situations where Metrohm analytical equipment is utilized, read on.

From underwater archaeological research to orbiting Earth on the International Space Station, Metrohm is there! We assist on all types of projects, like brewing top quality beers and even growing antibiotic-free shrimp – right here in Switzerland.

Interested in being featured? Contact your local Metrohm dealer for details!


Metrohm is the global market leader in analytical instruments for titration. Who else is better then to advise you in this area? Our experts are eager to share their knowledge with you, and show this with the abundance of topics they have contributed this year to our blog.

For more in-depth information about obtaining the most accurate pH measurements, take a look at our FAQ about pH calibration or read about avoiding the most common mistakes in pH measurement. You may pick up a few tips!

Choose the best electrode for your needs and keep it in top condition with our best practices, and then learn how to standardize titrant properly. Better understand what to consider during back-titration, check out thermometric titration and its advantages and applications, or read about the most common challenges and how to overcome them when carrying out complexometric titrations

If you are interested in improving your conductivity measurements, measuring dissolved oxygen, or the determination of oxidation in edible fats and oils, check out these blog posts and download our free Application Notes and White Papers!

Finally, this article about comprehensive water analysis with a combination of titration and ion chromatography explains the many benefits for laboratories with large sample loads. The history behind the TitrIC analysis system used for these studies can be found in a separate blog post.

Karl Fischer Titration

Metrohm and Karl Fischer titration: a long history of success. Looking back on more than half a century of experience in KFT, Metrohm has shaped what coulometric and volumetric water analysis are today.

Aside from the other titration blog posts, our experts have also written a 2-part series including 20 of the most frequently asked questions for KFT arranged into three categories: instrument preparation and handling, titration troubleshooting, and the oven technique. Our article about how to properly standardize Karl Fischer titrant will take you step by step through the process to obtain correct results.

For more specific questions, read about the oven method for sample preparation, or which is the best technique to choose when measuring moisture in certain situations: Karl Fischer titration, near-infrared spectroscopy, or both?

Ion Chromatography (IC)

Ion chromatography has been a part of the Metrohm portfolio since the late 1980s. From routine IC analysis to research and development, and from stand-alone analyzers to fully automated systems, Metrohm has provided IC solutions for all situations. If you’re curious about the backstory of R&D, check out the ongoing series about the history of IC at Metrohm.

Metrohm IC user sitting at a laboratory bench.

Common questions for users are answered in blog posts about IC column tips and tricks and Metrohm inline ultrafiltration. Clear calculations showing how to increase productivity and profitability in environmental analysis with IC perfectly complement our article about comprehensive water analysis using IC and titration together for faster sample throughput.

On the topic of foods and beverages, you can find out how to determine total sulfite faster and easier than ever, measure herbicides in drinking water, or even learn how Metrohm IC is used in Switzerland to grow shrimp!

Near-Infrared Spectroscopy (NIRS)

Metrohm NIRS analyzers for the lab and for process analysis enable you to perform routine analysis quickly and with confidence – without requiring sample preparation or additional reagents and yielding results in less than a minute. Combining visible (Vis) and near-infrared (NIR) spectroscopy, these analyzers are capable of performing qualitative analysis of various materials and quantitative analysis of a number of physical and chemical parameters in one run.

Our experts have written all about the benefits of NIR spectroscopy in a 4-part series, which includes an explanation of the advantages of NIRS over conventional wet chemical analysis methods, differences between NIR and IR spectroscopy, how to implement NIRS in your laboratory workflow, and examples of how pre-calibrations make implementation even quicker.

A comparison between NIRS and the Karl Fischer titration method for moisture analysis is made in a dedicated article.

A 2-part FAQ about NIRS has also been written in a collaboration between our laboratory and process analysis colleagues, covering all kinds of questions related to both worlds.

Raman Spectroscopy

This latest addition to the Metrohm family expands the Metrohm portfolio to include novel, portable instruments for materials identification and verification. We offer both Metrohm Raman as well as B&W Tek products to cover a variety of needs and requirements.

Here you can find out some of the history of Raman spectroscopy including the origin story behind Mira, the handheld Raman instrument from Metrohm Raman. For a real-world situation involving methamphetamine identification by law enforcement and first responders, read about Mira DS in action – detecting drugs safely in the field.

Mira - handheld Raman keeping you safe in hazardous situations.

Are you looking for an easier way to detect food fraud? Our article about Misa describes its detection capabilities and provides several free Application Notes for download.

Process Analytics

We cater to both: the laboratory and the production floor. The techniques and methods for laboratory analysis are also available for automated in-process analysis with the Metrohm Process Analytics brand of industrial process analyzers.

Learn about how Metrohm became pioneers in the process world—developing the world’s first online wet chemistry process analyzer, and find out how Metrohm’s modular IC expertise has been used to push the limits in the industrial process optimization.

Additionally, a 2-part FAQ has been written about near-infrared spectroscopy by both laboratory and process analysis experts, which is helpful when starting out or even if you’re an advanced user.

Finally, we offer a 3-part series about the advantages of process analytical technology (PAT) covering the topics of process automation advantages, digital networking of production plants, and error and risk minimization in process analysis.

Voltammetry (VA)

Voltammetry is an electrochemical method for the determination of trace and ultratrace concentrations of heavy metals and other electrochemically active substances. Both benchtop and portable options are available with a variety of electrodes to choose from, allowing analysis in any situation.

A 5-part series about solid-state electrodes covers a range of new sensors suitable for the determination of «heavy metals» using voltammetric methods. This series offers information and example applications for the Bi drop electrode, scTrace Gold electrode (as well as a modified version), screen-printed electrodes, and the glassy carbon rotating disc electrode.

Come underwater with Metrohm and Hublot in our blog post as they try to find the missing pieces of the ancient Antikythera Mechanism in Greece with voltammetry.

If you’d like to learn about the combination of voltammetry with ion chromatography and the expanded application capabilities, take a look at our article about combined analysis techniques.

Electrochemistry (EC)

Electrochemistry plays an important role in groundbreaking technologies such as battery research, fuel cells, and photovoltaics. Metrohm’s electrochemistry portfolio covers everything from potentiostats/galvanostats to accessories and software.

Our two subsidiaries specializing in electrochemistry, Metrohm Autolab (Utrecht, Netherlands) and Metrohm DropSens (Asturias, Spain) develop and produce a comprehensive portfolio of electrochemistry equipment.

This year, the COVID-19 pandemic has been at the top of the news, and with it came the discussion of testing – how reliable or accurate was the data? In our blog post about virus detection with screen-printed electrodes, we explain the differences between different testing methods and their drawbacks, the many benefits of electrochemical testing methods, and provide a free informative White Paper for interested laboratories involved in this research.

Our electrochemistry instruments have also gone to the International Space Station as part of a research project to more efficiently recycle water on board spacecraft for long-term missions.

The History of…

Stories inspire people, illuminating the origins of theories, concepts, and technologies that we may have become to take for granted. Metrohm aims to inspire chemists—young and old—to be the best and never stop learning. Here, you can find our blog posts that tell the stories behind the scenes, including the Metrohm founder Bertold Suhner.

Bertold Suhner, founder of Metrohm.

For more history behind the research and development behind Metrohm products, take a look at our series about the history of IC at Metrohm, or read about how Mira became mobile. If you are more interested in process analysis, then check out the story about the world’s first process analyzer, built by Metrohm Process Analytics.

Need something lighter? Then the 4-part history of chemistry series may be just what you’re looking for.

Specialty Topics

Some articles do not fit neatly into the same groups as the rest, but are nonetheless filled with informative content! Here you can find an overview of Metrohm’s free webinars, grouped by measurement technique.

If you work in a regulated industry such as pharmaceutical manufacturing or food and beverage production, don’t miss our introduction to Analytical Instrument Qualification and what it can mean for consumer safety!


Finally, if you are more interested in reading articles related to the industry you work in, here are some compilations of our blog posts in various areas including pharmaceutical, illicit substances, food and beverages, and of course water analysis. More applications and information can be found on our website.

Food and beverages
All of these products can be measured for total sulfite content.

Oxidation stability is an estimate of how quickly a fat or oil will become rancid. It is a standard parameter of quality control in the production of oils and fats in the food industry or for the incoming goods inspection in processing facilities. To learn more about how to determine if your edible oils are rancid, read our blog post.

Determining total sulfite in foods and beverages has never been faster or easier than with our IC method. Read on about how to perform this notoriously frustrating analysis and get more details in our free LC/GC The Column article available for download within.

Measuring the true sodium content in foodstuff directly and inexpensively is possible using thermometric titration, which is discussed in more detail here. To find out the best way to determine moisture content in foods, our experts have written a blog post about the differences between Karl Fischer titration and near-infrared spectroscopy methods.

To determine if foods, beverages, spices, and more are adulterated, you no longer have to wait for the lab. With Misa, it is possible to measure a variety of illicit substances in complex matrices within minutes, even on the go.

All of these products can be measured for total sulfite content.

Making high quality products is a subject we are passionate about. This article discusses improving beer brewing practices and focuses on the tailor-made system built for Feldschlösschen, Switzerland’s largest brewer.

Pharmaceutical / healthcare

Like the food sector, pharmaceutical manufacturing is a very tightly regulated industry. Consumer health is on the line if quality drops.

Ensuring that the analytical instruments used in the production processes are professionally qualified is a must, especially when auditors come knocking. Find out more about this step in our blog post about Analytical Instrument Qualification (AIQ).

Moisture content in the excipients, active ingredients, and in the final product is imperative to measure. This can be accomplished with different analytical methods, which we compare and contrast for you here.

The topic of virus detection has been on the minds of everyone this year. In this blog post, we discuss virus detection based on screen-printed electrodes, which are a more cost-effective and customizable option compared to other conventional techniques.

Water analysis

Water is our business. From trace analysis up to high concentration determinations, Metrohm has you covered with a variety of analytical measurement techniques and methods developed by the experts.

Learn how to increase productivity and profitability in environmental analysis laboratories with IC with a real life example and cost calculations, or read about how one of our customers in Switzerland uses automated Metrohm IC to monitor the water quality in shrimp breeding pools.

If heavy metal analysis is what you are interested in, then you may find our 5-part series about trace analysis with solid-state electrodes very handy.

Unwanted substances may find their way into our water supply through agricultural practices. Find out an easier way to determine herbicides in drinking water here!

Water is arguably one of the most important ingredients in the brewing process. Determination of major anions and cations along with other parameters such as alkalinity are described in our blog post celebrating International Beer Day.

All of these products can be measured for total sulfite content.
Illicit / harmful substances

When you are unsure if your expensive spices are real or just a colored powder, if your dairy products have been adulterated with melamine, or fruits and vegetables were sprayed with illegal pesticides, it’s time to test for food fraud. Read our blog post about simple, fast determination of illicit substances in foods and beverages for more information.

Detection of drugs, explosives, and other illegal substances can be performed safely by law enforcement officers and first responders without the need for a lab or chemicals with Mira DS. Here you can read about a real life training to identify a methamphetamine laboratory.

Drinking water regulations are put in place by authorities out of concern for our health. Herbicides are important to measure in our drinking water as they have been found to be carcinogenic in many instances.

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.