Select Page
Analysis of prebiotics with IC-PAD: Improving AOAC 2001.02

Analysis of prebiotics with IC-PAD: Improving AOAC 2001.02

Our diet is critical for our health. In the past several years, interest has increased in food additives and dietary supplements such as prebiotics like β-galactooligosaccharides (GOSs). The determination of total GOS contents in food and supplements is essential to fulfill strict food labeling and safety requirements. The most widely used method for total GOS determination is based on enzymatic hydrolysis to break down the complex molecules into simple carbohydrates prior to their chromatographic analysis. This article outlines the advantage of using an improvement to AOAC Method 2001.02 using ion chromatography with amperometric detection (IC-PAD) and full sample automation after enzymatic hydrolysis.

What are GOSs?

GOSs are chains of galactose units with an optional glucose end. They are often naturally present in small amounts in various foods and beverages.

Initially discovered as major constituents of human breast milk (present up to 12 g/L), GOSs are added as a prebiotic supplement to infant formulas. They show bifidogenic effects, meaning they support growth and well-being of non-pathogenic gut bacteria.

GOS supplements are available either raw, or as concentrated powders or syrups, and are subsequently used by food manufacturers to enrich consumer products or sold as supplements.

GOS labeling requirements

The ongoing growth of global prebiotic and GOS markets is a result of increasing consumer awareness regarding healthy eating. Similarly, increased demand regarding food quality has led to stricter, more comprehensive rules for food labeling and safety (e.g., EU 1169/2011 and  EU 2015/2283). The determination of total GOS contents in food, supplements, or raw products is thus essential to fulfill such requirements.

Studies about GOS health effects recommend maximum doses under 30 g per day, though this is much stricter for infant formulas. Otherwise, there are no other limits regarding GOS content in food or as nutritional supplements.

AOAC 2001.02

The most widely used method to measure total GOSs in food products is the standard method AOAC 2001.02. This method is based on the extraction of GOS from a sample followed by enzymatic hydrolysis of the oligosaccharides into monosaccharides and their subsequent analyses with high performance anion exchange chromatography with pulsed amperometric detection.

Figure 1. Schematic for determination of total GOS contents using ion chromatography with pulsed amperometric detection (IC-PAD) according to AOAC 2001.02, and an optimized method from Metrohm (in green). Chromatography for anions in AOAC is referred as HPAEC (high performance anion exchange chromatography) but is simplified here to the generic term of IC.

In AOAC, chromatography for anions is referred to as HPAEC (high performance anion exchange chromatography) but here we will simplify this to the generic term of IC.

The key to AOAC 2001.02 is the comparison of a control solution with one which has been treated and hydrolyzed with an enzyme (β-galactosidase). The enzyme catalyzes the splitting of glycosidic bonds and hydrolyzes GOSs and lactose into glucose and galactose. The concentration differences of free galactose and lactose determined in these two solutions is used to calculate the total GOSs (Figure 1).

Improvements to the AOAC Method

The sample preparation for AOAC 2001.02 is rather complex: one shortcoming is the incubation of the reference solution with the deactivated enzyme (which is rather expensive) to determine the initial carbohydrate concentrations (Figure 1) rather than using the pure extract. Another critical point is the sample dilution procedure, which is supposed to be done in acetonitrile, while standards are based on ultrapure water.

Here, the focus was to simplify the entire procedure to increase the ease of use and the overall efficiency of the method.

The improved method for total GOS content analysis uses the extract for measuring of the initial glucose, galactose, and lactose concentrations (Figure 1 Assay 1). However, the deactivated enzyme was not used, and instead comparisons were made to see if its presence had any effect on the results. This step was eliminated after proving results equivalent to AOAC 2001.02 Assay 1 (with the deactivated enzyme), but chemical expenses and additional manual work are reduced. The total GOS content is therefore calculated from the analyte concentrations in Assay 1 (without any enzyme) and Assay 2 (extract with the active enzyme) (Figure 2).

Figure 2. Overlaid chromatograms of Bimuno (prebiotic supplement), untreated (black) and treated with enzyme (orange).

Want to know more details about the application? Download our free Application Note AN-P-087 about total GOS analysis in foods with ion chromatography!

Aside from the enzyme usage, the official AOAC method for analysis of total GOSs suggests that standards be prepared in ultrapure water (UPW) while samples are to be diluted with 20% acetonitrile. A control experiment was performed to compare results between:

  • Dilutions in UPW evaluated with UPW calibration (“UPW option”)
  • Dilutions in acetonitrile evaluated with UPW calibration (AOAC 2001.02)
  • Dilutions in acetonitrile evaluated with acetonitrile calibration (“ACN option”)

Reproducibility of total GOS contents was compared among the three options, with the UPW and AOAC preparation options exhibiting similar results. The ACN option resulted in lower total GOS contents than the others. Additionally, the acetonitrile did not seem to lend a stabilizing effect to the samples. This supports the improvement of the AOAC method by performing sample dilutions with UPW instead of acetonitrile, saving unnecessary reagents and limiting the chemical imprint of the analysis.

Results

Overall, the satisfying variability, target and spike recoveries (Application Note AN-P-087), together with the interference tests proved the modified method as valuable and robust. With limits of detection (LODs) of 0.1 mg/L (galactose) and 0.2 mg/L (glucose, lactose) in solution, even low total GOS contents can be determined with high precision.

Summary

As a multicomponent method, ion chromatography with amperometric detection is a very selective, sensitive, and robust analysis method for carbohydrates without any additional derivatization steps. In combination with enzymatic treatment, even more complex carbohydrates can be quantified.

This research presents an update to the standard AOAC method for total GOS determination in foodstuffs. With the same principle (enzymatic hydrolysis of complex GOS molecules followed by chromatographic analysis of simple carbohydrates), analytical method efficiency was improved in favor of laboratory time and running costs. Additional automation steps (e.g., Metrohm Inline Dilution and automatic calibrations) can further improve the method efficiency.

Want more information about the simplified method for total GOSs via IC-PAD? More details about the improvement of AOAC method 2001.02 by reducing manual laboratory work and eliminating expensive reagents can be found in our article published in The Column from LC/GC (2021): Improving on AOAC 2001.02: GOS Determination in Foods Using HPAEC–PAD.

Read our article in LC/GC The Column (2021)

Improving on AOAC 2001.02: GOS Determination in Foods Using HPAEC–PAD

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.

Recipes with Raman

Recipes with Raman

Many of us have spent more time in the kitchen in the past year than usual, (re)discovering our culinary skills with varying degrees of success. Our pantries have been kept full, and our stoves on for a year (and counting) since our normal, social ways of life have been curtailed by home office regulations, online schooling, and the sweeping closures of bars and restaurants.

Cooking at home can mean a number of things. Some people rely on «Chef Mike» (i.e., the microwave) to prepare their meals, while others turn humble ingredients into haute cuisine dishes. However, most people would probably agree that the keys to delicious and nutritious meals are fresh, high quality ingredients.

What is on your menu today? For breakfast, perhaps toast and some fresh pressed orange juice, lunch is maybe a quiche with tomatoes and cheese, and for dinner, stir-fried vegetables accompanied by a glass of good wine. Hungry yet?

With all of this talk about food, how can you be certain that the ingredients you are using in the kitchen are of the highest quality? You may trust in the grocery store, the brand, or the farmer at your local market, but do you know how different food quality parameters are measured?

One technique provides rapid, non-destructive and specific food quality testing: Raman spectroscopy. Whether you are looking to determine the ripeness of fruits or vegetables, the adulteration of spices or dairy products, or contamination of foods with banned pesticides, Raman spectroscopy is at the cutting edge of food quality analysis.

If you want to refresh your knowledge about Raman spectroscopy, have a look at our previous blog post about Mira, which includes some history about the technique.

To learn more about the analysis of trace adulterants in foods and beverages, read our blog post all about measurement with SERS (surface‐enhanced Raman scattering).

Are you confused about the differences between Raman spectroscopy and SERS? You’re not alone! Check out our blog post about these two techniques and learn about their benefits.

Here, we share a selection of peer-reviewed articles from the scientific community using Raman spectroscopy and portable instrumentation from B&W Tek, a Metrohm Group Company and Metrohm Raman to address quality issues of food. Enjoy your meal! Bon appetit!

~~ Starter ~~

To begin, maybe you would be interested in sharing a bottle of red wine with your companion as you snack on some crispy bread sticks. Red wines are made from red varieties of grapes, whose color is imparted through the crushing process as the skins soak in the sugary juices. Phenolic compounds derived from the grape skins can be beneficial to human health, and can be determined with Raman spectroscopy [1].

It’s not only beneficial compounds but also harmful contaminants that can be measured in beverages with Raman spectroscopy. Fungicides can also be detected in wine with SERS. Download our free Application Note if you want to find out more.

Watch our video below to see how methanol in alcoholic drinks is quantified rapidly without sample preparation – right at the bottle!

Snacking on prepackaged foods when you are on the go, or when you don’t feel like cooking at the moment, is something we have all done. The moisture levels in most of these foods is kept to a minimum, especially in those meant to have long shelf lives. Water content above certain levels allows harmful bacteria to grow, which is one of the major reasons to always consult the date of packaged foods before consumption. Eating contaminated foods can cause severe sickness and even death. It is possible to determine whether such low moisture foods (LMFs) contain harmful levels of these bacteria with SERS [2].

What else do both of these applications have in common? Both of them utilize the portable i-Raman Plus instrument from B&W Tek. For more information, download our free application note: Portable Raman for Quantification of Methanol in Contaminated Spirits.

~~Main Course~~

Depending on what you are in the mood for, anything is possible. Some tomatoes, vegetables, spices, perhaps meat (if you eat it) and a starch are on the menu today, ready to be turned into almost any dish.

Determining whether fresh foods are at peak ripeness can be a tricky process, not necessarily just the change of a color. The ripeness of a fruit or vegetable indicates its antioxidant content, as well as nutrients and other beneficial compounds. Monitoring the ripening process is possible with portable Raman spectroscopy [3], such as the B&W Tek i-Raman Pro.

Some of us like a little heat in our meals. Unfortunately, the adulteration of spices like chili powder (sometimes known as cayenne powder) is common, as cheap and harmful coloring agents are added to achieve more profits at the cost of human health. These synthetic dyes are able to be determined easily even at trace levels with SERS [4].

Download our free Application Note to learn more about the detection of trace levels of Rhodamine B in cayenne powder with SERS.

Some types of cheese command a high price for what seems like just a small pinch. One such type is Parmigiano Reggiano, an Italian cheese with a protected denomination of origin (PDO) quality marker, made in compliance with several production rules. These cheeses are subject to counterfeiting, but luckily this is easy to determine on-site without damaging the sample using handheld Raman spectroscopy [5].

The price of meat varies according to several reasons, even for the same animal source, section (cut), and portion size. Among these is the origin of the meat, as well as how it was produced (e.g., organic or a factory farm). Determining the difference between premium meat products and lower quality ones is possible with handheld Raman systems [6] such as Mira from Metrohm Raman. Not only these differences but also the freshness of meat during the production process can be measured with portable Raman devices [7] like the i-Raman Plus from B&W Tek.

Using lower quality cooking oil with a low smoke point at high temperatures can result in consumption of harmful byproducts formed during cooking. Older oils have a lower antioxidant content as a result of the aging process, and can become rancid when the antioxidant properties vanish. For these reasons, high quality edible oils full of antioxidants are worth much more, but are also susceptible to adulteration with cheaper ingredients. It is possible to not only determine the purity of edible oils by Raman spectroscopy [8] but also the heat stability of different types of oils [9].

For more information about the analysis of edible oils by Raman spectroscopy, download our free Application Notes and our White Paper below!

~~ Dessert ~~

After dinner is over, a hot beverage like tea can be nice to cleanse the palate. How can you be sure that the tea is free of banned pesticides, other than buying from a trusted organic label? SERS allows rapid identification of such substances in tea leaves [10].

To learn more about detecting illegal compounds such as herbicides on tea leaves, download our free Application Note.

The honey you put in your tea or drizzle over your dessert can also be subjected to tampering. Depending on the type of flower or the origin of the honey, costs can vary widely for the same volume. Some honeys (e.g., Manuka) claim to impart certain health benefits, and therefore many lower quality products with cheap sweeteners (e.g., high fructose corn syrup) are falsely labeled as such and sold at a higher price point to unsuspecting consumers. It is possible to detect honey adulteration [11] and even its botanical origin [12] with Raman spectroscopy.

Not only tea and honey, but also coffee and the milk added to it can be analyzed with Raman spectroscopy to determine various quality markers and adulterants.

The protein content of milk can be falsely enhanced with the addition of melamine. This compound is now monitored in dairy products due to scandals which led to deaths from kidney damage. Melamine [13] and other substances which can contribute to ill health effects [14] can be easily determined in milk with SERS.

Want to learn more about Melamine and how to measure it with SERS? Check out our free Application Note for further information.

Download our free Application Note to learn about the rapid detection of the alkaloid trigonelline in coffee, which reduces in concentration the darker the beans are roasted.

The ripeness of fruits and vegetables is not just important information when planning meals, but it is also critical for food transport. Perishable fruits and vegetables are often shipped in an unripened state so they arrive at their destination in top condition.

Freshness in citrus fruits can be determined with portable Raman instruments by measuring the carotenoid content [15].

Aside from the freshness, it is also possible to detect if pesticides, fungicides, herbicides or other harmful substances have been sprayed onto fruits using SERS [16].

Check out our selection of free Application Notes below about the determination of these kinds of substances on different fruits with Misa.

Several food quality parameters can be measured quickly and easily with Raman spectroscopy without the need to open bottles or destroy samples. Portable and handheld instruments make measurements simple to perform nearly anywhere. Visit the Metrohm website to learn more about the possibilities with Raman!

Learn more about rapid food analysis with Raman spectroscopy

Download free applications directly from our website.

References

[1] Dranca, F.; Oroian, M. Kinetic Improvement of Bioactive Compounds Extraction from Red Grape (Vitis vinifera Moldova) Pomace by Ultrasonic Treatment. Foods 2019, 8, 353. doi:10.3390/foods8080353

[2] Pan, C.; Zhu, B.; Yu, C. A Dual Immunological Raman-Enabled Crosschecking Test (DIRECT) for Detection of Bacteria in Low Moisture Food. Biosensors 2020, 10, 200. doi:10.3390/bios10120200

[3] Trebolazabala, J.; Maguregui, M.; Morillas, H.; et al. Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato (Solanum lycopersicum) fruits. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 180, 138–143. doi:10.1016/j.saa.2017.03.024

[4] Lin, S.; Hasi, W.-L.-J.; Lin, X.; et al. Rapid and sensitive SERS method for determination of Rhodamine B in chili powder with paper-based substrates. Analytical Methods 2015, 7, 5289–5294. doi:10.1039/c5ay00028a

[5] Li Vigni, M.; Durante, C.; Michelini, S.; et al. Preliminary Assessment of Parmigiano Reggiano Authenticity by Handheld Raman Spectroscopy. Foods 2020, 9(11), 1563. doi:10.3390/foods9111563

[6] Logan, B.; Hopkins, D.; Schmidtke, L.; et al. Authenticating common Australian beef production systems using Raman spectroscopy. Food Control 2021, 121, 107652. doi:10.1016/j.foodcont.2020.107652

[7] Santos, C; Zhao, J.; Dong, X.; et al. Predicting aged pork quality using a portable Raman device. Meat Science 2018, 145, 79–85. doi:10.1016/j.meatsci.2018.05.021

[8] Liu, Z.; Yu, S.; Xu, S.; et al. Ultrasensitive Detection of Capsaicin in Oil for Fast Identification of Illegal Cooking Oil by SERRS. ACS Omega 2017, 2, 8401–8406. doi:10.1021/acsomega.7b01457

[9] Alvarenga, B.; Xavier, F.; Soares, F.; et al. Thermal Stability Assessment of Vegetable Oils by Raman Spectroscopy and Chemometrics. Food Analytical Methods 2018, 11, 1969–1976. doi:10.1007/s12161-018-1160-y

[10] Yao, C.; Cheng, F.; Wang, C.; et al. Separation, identification and fast determination of organophosphate pesticide methidathion in tea leaves by thin layer chromatography–surface-enhanced Raman scattering. Analytical Methods 2013, 5, 5560. doi:10.1039/c3ay41152d

[11] Li, S.; Shan, Y.; Zhu, X.; et al. Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. Journal of Food Composition and Analysis 2012, 28, 69–74. doi:10.1016/j.jfca.2012.07.006

[12] Oroian, M.; Ropciuc, S. Botanical authentication of honeys based on Raman spectra. Journal of Food Measurement and Characterization 2017, 12, 545–554. doi:10.1007/s11694-017-9666-3

[13] Nieuwoudt, M.; Holroyd, S.; McGoverin, C.; et al. Rapid, sensitive, and reproducible screening of liquid milk for adulterants using a portable Raman spectrometer and a simple, optimized sample well. Journal of Dairy Science 2016, 99, 7821–7831. doi:10.3168/jds.2016-11100

[14] Lin, X.; Hasi, W.-L.-J.; Lou, X.-T.; et al. Rapid and simple detection of sodium thiocyanate in milk using surface-enhanced Raman spectroscopy based on silver aggregates. Journal of Raman Spectroscopy 2014, 45, 162–167. doi:10.1002/jrs.4436

[15] Nekvapil, F.; Brezestean, I.; Barchewitz, D.; et al. Citrus fruits freshness assessment using Raman spectroscopy. Food Chemistry 2018, 242, 560–567. doi:10.1016/j.foodchem.2017.09.105

[16] Xie, J.; Li, L.; Khan, I.; et al. Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 231, 118104. doi:10.1016/j.saa.2020.118104

Post written by Dr. Sara Seiffert (Product Specialist Spectroscopy at Metrohm Deutschland) and Dr. Alyson Lanciki (Scientific Editor at Metrohm International Headquarters).

Chemistry of Chocolate

Chemistry of Chocolate

Swiss… Belgian… Pure… Milk…

Here we are in mid-February again, bombarded by chocolate from all sides in preparation for Valentine’s Day on the 14th. Whether in a solid bar, as a chewy truffle, or as a luxurious drink, chocolate has completely infiltrated our lives. Most people can agree that this confectionary treat is fantastic for any occasion – to be given as a gift, to recover after having a bad day, as well as to celebrate a good one – chocolate is certainly meant to be enjoyed.

Even if you don’t like the taste, the chances are high that someone close to you does. So how can you be certain of its quality?

Components of a chocolate bar

For the sake of this article, let us consider the humble chocolate bar, without any extra additions (not to mention any Golden Tickets). This form can be found worldwide in nearly any grocery store or candy shop, generally designated as white, milk, or dark.

All of this variability comes from the edible seeds in the fruit of the cacao tree, which grows in hot, tropical regions around the equator. They must be fermented and then roasted after cleaning. From this, cocoa mass is produced, which is a starting base for several uses. Cocoa butter and cocoa solids are prepared from the cocoa mass and are utilized in products ranging from foods and beverages to personal care items.

As for chocolate bars, these are generally sweetened and modified from the pure form, which is very bitter. Milk (liquid, condensed, or powdered) is added to many types, but does not necessarily have to be present. Varying the content of the cocoa solids and cocoa butter in chocolate to different degrees results in the classifications of dark to white. While some dark chocolates do not contain any milk, white chocolates do to add to the significant amounts of cocoa fat used to produce them.

In general, dark chocolate contains a high ratio of cocoa solids to cocoa butter and may or may not contain any milk. It may be sweetened or unsweetened. Milk chocolate is a much broader category, containing less cocoa solids but not necessarily a different cocoa butter content compared to dark chocolate, as milk fats are also introduced. Milk chocolate is also sweetened, either with sugar or other substitutes. White chocolate contains no cocoa solids at all, but a blend of cocoa butter and milk, along with sweeteners.

Depending on the country, there are different regulations in place regarding the classification of the type of chocolate. If you are interested, you can find a selection of them here.

What makes your favorite chocolate unique?

Of course, more ingredients are added to chocolate bars to affect a number of things like the aroma, texture/mouthfeel, and certainly to enhance the flavor. The origin of the cacao beans, much like coffee, can impart certain characteristics to the resulting chocolate. The manufacturing process also plays a major part in determining e.g., whether the chocolate has a characteristic snap or has a distinct scent, setting it apart from other brands.

In some cases, vegetable fats are used to replace a portion of the cocoa fats, although this may not legally be considered «chocolate» in some countries. The adjustment of long-standing recipes for certain chocolate brands has sometimes led to customer backlash, as quality is perceived to have changed. Truly, chocolate is inextricably tied to our hearts.

Applications for chocolate quality analysis

Nobody wants to give their Valentine a bad gift, especially out-of-date chocolate from a dubious source. Here, we have prepared some interesting analyses for different chocolate quality parameters in the laboratory.

Sugar analysis via Ion Chromatography (IC)

Most types of chocolate contain sugars or sugar substitutes to sweeten the underlying bitterness. Considering different regulations regarding food labeling and also nutritional content, the accurate reporting of sugars is important for manufacturers and consumers alike.

Sugar analysis in chocolate can be performed with Metrohm IC and Pulsed Amperometric Detection (PAD). An example chromatogram of this analysis is given below.

A small amount of commercially produced sweetened milk chocolate was weighed and dissolved into ultrapure water. After further sample preparation using Metrohm Inline Ultrafiltration, the sample (20 µL) was injected on to the Metrosep Carb 2 – 150/4.0 separation column and separated using alkaline eluent. As shown, both lactose and sucrose elute without overlap in less than 20 minutes.

Learn more about Metrohm Inline Ultrafiltration for difficult sample matrices and safeguard your IC system!

In this example, the sugar content was listed on the label as 47 g per 100 g portion (470 g/kg). Lactose was determined to be 94.6 g/kg, and sucrose was measured at 385.6 g/kg. To learn about what other carbohydrates, sweeteners, and more can be determined in chocolate and other foods with Metrohm IC, download our free brochure about Food Analysis and check out the table on page 25!

Lactose content in lactose-free chocolate

The accurate measurement of lactose in lactose-free products, including chocolate, is of special importance to consumers who are lactose-intolerant and suffer from digestive issues after eating it. Foods which are labelled as lactose-free must adhere to guidelines concerning the actual non-zero lactose content. Foodstuff containing less than 0.1 g lactose per100 g (or 100 mL) is most frequently declared as lactose-free.

Determination of lactose in chocolate is possible with IC. Here is an chromatographic overlay of a dissolved chocolate sample with lactose spikes which was analyzed via Metrohm IC using the flexiPAD detection mode.

Milk chocolate, labelled lactose-free measured via Metrohm IC (0.57 ± 0.06 mg/100 g lactose, n = 6).

The sample contained 0.6 mg lactose per 100 g, with measurement of the lactose peak occurring at 13.2 minutes. The black line is the unspiked lactose-free chocolate sample, red and blue are spiked samples of increasing concentration. To prepare the samples, approximately 2.5–5 g chocolate was dissolved in heated ultrapure water, using Carrez reagents to remove excess proteins and fats from the sample matrix. Afterward, centrifugation of the samples was performed, followed by the direct injection of the supernatant (10 µL) into the IC system. Measurement was performed with the Metrosep Carb 2 – 250/4.0 separation column and an alkaline eluent.

Interested in lactose determinations with ion chromatography? Download our free Application Notes on the Metrohm website!

Water determination with Karl Fischer Titration

The amount of water in foods, including chocolate, can affect their shelf life and stability, as well as contribute to other physical and chemical factors. Aside from this, during the processing stage, the amount of water present affects the flow characteristics of the chocolate mass.

AOAC Official Method 977.10 lists Karl Fischer titration as the accepted analysis method for moisture in cacao products.

The determination of moisture in different chocolate products is exhibited in the following downloadable poster. As an example, several samples (n = 10) of dark chocolate (45% cocoa content) were analyzed for their moisture content with Metrohm Karl Fischer titration.  Results were found to be 0.96% water with a relative standard deviation (RSD) of 2.73%. More information about this analysis can be found in our poster about automated water determination in chocolate, or in chapter 11.6 of our comprehensive Monograph about Karl Fischer titration.

Oxidation stability with the Rancimat test

Oxidation stability is an important quality criterion of chocolate as it provides information about the long-term stability of the product. Cocoa contains various flavonoids that act as antioxidants. Although the flavonoid content may vary amongst chocolate type, in general, the greater the content of cocoa solids in the chocolate, the greater its antioxidant effect.

The 892 Professional Rancimat from Metrohm determines the oxidation stability of fat-containing foods and cosmetics. The Rancimat method accelerates the aging process of the sample and measures the induction time or oxidation stability index (OSI).

Chocolate cannot be measured directly with the classical Rancimat method, as no evaluable induction time is obtained. There are many reasons for this: e.g., the fat content is too low. Traditionally, extraction of the fat from the chocolate is necessary, but not always.

Learn more about the Rancimat method on our website, and download our free Application Note about the oxidation stability of chocolate. In this Application Note, the oxidation stability of white, milk and dark chocolate is determined without extraction.

Cadmium in chocolate by Voltammetric analysis

The toxic element cadmium (Cd) can be found in elevated concentrations with high bioavailability in some soils. Under such conditions, cacao trees can accumulate cadmium in the beans. Chocolate produced from the affected beans will contain elevated cadmium levels.

Typical limit values for Cd in chocolate in the European Union are between 100 µg/kg and 800 µg/kg (EU Commission Regulation 1881/2006) depending on the cocoa content of the chocolate. Anodic stripping voltammetry (ASV) can be used to accurately determine trace quantities of cadmium in chocolate down to approximately 10 µg/kg. The method is simple to perform, specific, and free of interferences.

Chocolate samples are first mineralized by dry ashing in a furnace at 450 °C for several hours. The remaining ash is then dissolved in an acidified matrix. The cadmium determination is then carried out on the 884 Professional VA instrument from Metrohm. To learn more about how to perform the analysis, download our free Application Note.

Happy Valentine’s Day from us all at Metrohm!

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.

Introduction to Analytical Instrument Qualification – Part 2

Introduction to Analytical Instrument Qualification – Part 2

Welcome back to our blog, and happy 2021! We hope that you and your families had a safe and restful holiday season. To start the year, we will conclude our introduction to Analytical Instrument Qualification. 

Metrohm’s approach to Analytical Instrument Qualification (AIQ)

Metrohm’s answer to Analytical Instrument Qualification is bundled in our Metrohm Compliance Services. The most thorough level of documentation offered for AIQ is the IQ/OQ.

Metrohm IQ/OQ documentation provides you with the required documentation in strict accordance to the major regulations from the USP, FDA, GAMP, and PIC/S, allowing you to document the suitability of your Metrohm instruments for your lab’s specific intended use.

With our test procedures (described later in more detail), we can prove that the hardware and software components function correctly, both individually and as part of the system as a whole. With Metrohm’s IQ/OQ, you are supported in the best possible way to integrate our systems into your current processes.

Our high quality documentation will have you «audit ready» all the time.

The flexibility of a modular document structure

Depending on the environment you work in and your specific demands, Metrohm can offer a tailored qualification approach thanks to documentation modularity. If you need a lower level of qualification, only the required modules can be executed. Our documentation consists of different modules, each of which documents the identity of the Metrohm representative along with the qualification reviewer, combined with the details of each instrument, software, and document involved in the qualification.  Thanks to this, each module is independent, which guarantees both full traceability and reliability for your system setup.

Cost-effective qualification from Metrohm

Metrohm supports you by implementing a cost-effective qualification process, depending upon your requirements and the modules needed. This means that a qualification is not about performing unnecessary actions, qualification is about completing the required work.

The risk assessment analysis defines the level of qualification needed and based on it, we focus on testing only what needs to be tested. In case you relocate your device to another lab, which qualification steps (DQ, IQ, OQ, PQ) are really needed in order to fulfill your requirements? Contact your local Metrohm expert for advice on this matter.

A complete Metrohm IQ/OQ qualification includes…

Metrohm IQ/OQ documentation is based on the following documentation tree, beginning with the first module, the Master Document (MD), followed by the Installation Qualification (IQ) and eventually the Operational Qualification (OQ). The OQ is then divided again into individual component tests (Hardware and Software) and a holistic test to validate your complete system.

Master Document (MD)

Each qualification starts with the Master Document (MD) – the central organizing document for the AIQ procedures. It not only describes the process of installing and qualifying the instruments, but also the competence and education level of the qualifying engineer. The MD identifies all other components to be added to the qualification, resulting in a flexible framework on which to build up a set of documentation.

Installation Qualification (IQ)

Once the content of the documentation is defined in the MD, the Installation Qualification (IQ) follows. This set of documentation is designed to ensure that the instrument, software, and any accessories have been all delivered and installed correctly. The IQ protocol additionally specifies that the workplace is suitable for the analytical system as stipulated by Metrohm.

Operational Qualification (OQ)

After a correct installation comes the main part of the qualification: the Operational Qualification (OQ). In the first part of the OQ, the functionality of the single hardware components is tested and evaluated according to a set of procedures. This is to ensure that the instrument is working perfectly as designed, and is safe to use. Rest assured that you can rely on the expertise of our Metrohm certified engineers to conduct these comprehensive tests on your instruments using the necessary calibrated and certified tools.

The second part of the OQ consists of a set of Software Tests to prove that the installed Metrohm software functions correctly and reliably on the computer it was installed on. The importance of maintaining software in a validated state is also related to the data integrity of your laboratory. Therefore these software tests can be repeated periodically or after major changes. In particular, these functionality tests cover verifications on user management, database functionalities, backups, audit trail review, security policy, electronic signatures, and so on.

At Metrohm, we constantly work to improve our procedures and use state of the art tools and technologies.  For this reason, we have implemented a completely automated test procedure for validating the software of our new OMNIS platform. This ensures full integrity in the execution and delivers consistent results with a faster and completely error-free test execution. This innovative and automated software validation eliminates manual activities that are labor intensive and time consuming. This therefore expedites testing and removes the inefficiencies that plague the paper-based software validation.

Your benefit is clear: save valuable time and reduce unnecessary laboratory start-up activities during qualification. That’s time you can spend on other work in your lab!

Holistic Test (Performance Verification, PV)

Once each individual component has been separately tested, the performance of the system as a whole is proven by means of a holistic test (OQ-PV).

This includes a series of «wet-chemical» tests, performed using certified reference materials, to prove the system is capable of generating quality data, i.e. results that are accurate, precise, and above all fit for purpose. Based on detailed, predefined instructions (SOPs), a series of standard measurements are performed, statistically evaluated, and compared to the manufacturer’s specifications.

Differences between Performance Verification (PV) and Performance Qualification (PQ)

The Performance Verification (PV) is a set of tests offered by Metrohm in order to verify the fitness for purpose of the instrument. As mentioned in the previous paragraph, the PV includes standardized test procedures to ensure the system operates as designed by the manufacturer in the selected environment.

On the other hand, the Performance Qualification (PQ) is a very customer specific qualification phase (see the «4 Q’s» Qualification Phases found in Part 1). PQ verifies the fitness for purpose of the instrument under actual condition of use, proving its continued suitability. Therefore, PQ tests are defined depending on your specific analysis and acceptance criteria.

Now my questions to you—is your analytical instrument qualified for its intended use? Is your lab in compliance with the latest regulations for equipment qualification and validation? Get expert advice directly from your local Metrohm agency and request your quote for Metrohm qualification services today!

Check out our online material:

Metrohm Quality Service

Post written by Lara Casadio, Jr. Product Manager Service at Metrohm International Headquarters, Herisau, Switzerland.

«Analyze This»: 2020 in review

«Analyze This»: 2020 in review

I wanted to end 2020 by thanking all of you for making «Analyze This» – the Metrohm blog for chemists such a success! For our 60th blog post, I’d like to look back and focus on the wealth of interesting topics we have published this year. There is truly something for everyone: it doesn’t matter whether your lab focuses on titration or spectroscopic techniques, or analyzes water samples or illicit substances – we’ve got you covered! If you’re looking to answer your most burning chemical analysis questions, we have FAQs and other series full of advice from the experts. Or if you’re just in the mood to learn something new in a few minutes, there are several posts about the chemical world to discover.

We love to hear back from you as well. Leaving comments on your favorite blog posts or contacting us through social media are great ways to voice your opinion—we at Metrohm are here for you!

Finally, I wish you and your families a safe, restful holiday season. «Analyze This» will return on January 11, 2021, so subscribe if you haven’t already done so, and bookmark this page for an overview of all of our articles grouped by topic!

Stay healthy, and stay curious.

Best wishes,

Dr. Alyson Lanciki, Scientific Editor, Metrohm AG

Quickly jump directly to any section by clicking a topic:

Customer Stories

We are curious by nature, and enjoy hearing about the variety of projects where our products are being used! For some examples of interesting situations where Metrohm analytical equipment is utilized, read on.

From underwater archaeological research to orbiting Earth on the International Space Station, Metrohm is there! We assist on all types of projects, like brewing top quality beers and even growing antibiotic-free shrimp – right here in Switzerland.

Interested in being featured? Contact your local Metrohm dealer for details!

Titration

Metrohm is the global market leader in analytical instruments for titration. Who else is better then to advise you in this area? Our experts are eager to share their knowledge with you, and show this with the abundance of topics they have contributed this year to our blog.

For more in-depth information about obtaining the most accurate pH measurements, take a look at our FAQ about pH calibration or read about avoiding the most common mistakes in pH measurement. You may pick up a few tips!

Choose the best electrode for your needs and keep it in top condition with our best practices, and then learn how to standardize titrant properly. Better understand what to consider during back-titration, check out thermometric titration and its advantages and applications, or read about the most common challenges and how to overcome them when carrying out complexometric titrations

If you are interested in improving your conductivity measurements, measuring dissolved oxygen, or the determination of oxidation in edible fats and oils, check out these blog posts and download our free Application Notes and White Papers!

Finally, this article about comprehensive water analysis with a combination of titration and ion chromatography explains the many benefits for laboratories with large sample loads. The history behind the TitrIC analysis system used for these studies can be found in a separate blog post.

Karl Fischer Titration

Metrohm and Karl Fischer titration: a long history of success. Looking back on more than half a century of experience in KFT, Metrohm has shaped what coulometric and volumetric water analysis are today.

Aside from the other titration blog posts, our experts have also written a 2-part series including 20 of the most frequently asked questions for KFT arranged into three categories: instrument preparation and handling, titration troubleshooting, and the oven technique. Our article about how to properly standardize Karl Fischer titrant will take you step by step through the process to obtain correct results.

For more specific questions, read about the oven method for sample preparation, or which is the best technique to choose when measuring moisture in certain situations: Karl Fischer titration, near-infrared spectroscopy, or both?

Ion Chromatography (IC)

Ion chromatography has been a part of the Metrohm portfolio since the late 1980s. From routine IC analysis to research and development, and from stand-alone analyzers to fully automated systems, Metrohm has provided IC solutions for all situations. If you’re curious about the backstory of R&D, check out the ongoing series about the history of IC at Metrohm.

Metrohm IC user sitting at a laboratory bench.

Common questions for users are answered in blog posts about IC column tips and tricks and Metrohm inline ultrafiltration. Clear calculations showing how to increase productivity and profitability in environmental analysis with IC perfectly complement our article about comprehensive water analysis using IC and titration together for faster sample throughput.

On the topic of foods and beverages, you can find out how to determine total sulfite faster and easier than ever, measure herbicides in drinking water, or even learn how Metrohm IC is used in Switzerland to grow shrimp!

Near-Infrared Spectroscopy (NIRS)

Metrohm NIRS analyzers for the lab and for process analysis enable you to perform routine analysis quickly and with confidence – without requiring sample preparation or additional reagents and yielding results in less than a minute. Combining visible (Vis) and near-infrared (NIR) spectroscopy, these analyzers are capable of performing qualitative analysis of various materials and quantitative analysis of a number of physical and chemical parameters in one run.

Our experts have written all about the benefits of NIR spectroscopy in a 4-part series, which includes an explanation of the advantages of NIRS over conventional wet chemical analysis methods, differences between NIR and IR spectroscopy, how to implement NIRS in your laboratory workflow, and examples of how pre-calibrations make implementation even quicker.

A comparison between NIRS and the Karl Fischer titration method for moisture analysis is made in a dedicated article.

A 2-part FAQ about NIRS has also been written in a collaboration between our laboratory and process analysis colleagues, covering all kinds of questions related to both worlds.

Raman Spectroscopy

This latest addition to the Metrohm family expands the Metrohm portfolio to include novel, portable instruments for materials identification and verification. We offer both Metrohm Raman as well as B&W Tek products to cover a variety of needs and requirements.

Here you can find out some of the history of Raman spectroscopy including the origin story behind Mira, the handheld Raman instrument from Metrohm Raman. For a real-world situation involving methamphetamine identification by law enforcement and first responders, read about Mira DS in action – detecting drugs safely in the field.

Mira - handheld Raman keeping you safe in hazardous situations.

Are you looking for an easier way to detect food fraud? Our article about Misa describes its detection capabilities and provides several free Application Notes for download.

Process Analytics

We cater to both: the laboratory and the production floor. The techniques and methods for laboratory analysis are also available for automated in-process analysis with the Metrohm Process Analytics brand of industrial process analyzers.

Learn about how Metrohm became pioneers in the process world—developing the world’s first online wet chemistry process analyzer, and find out how Metrohm’s modular IC expertise has been used to push the limits in the industrial process optimization.

Additionally, a 2-part FAQ has been written about near-infrared spectroscopy by both laboratory and process analysis experts, which is helpful when starting out or even if you’re an advanced user.

Finally, we offer a 3-part series about the advantages of process analytical technology (PAT) covering the topics of process automation advantages, digital networking of production plants, and error and risk minimization in process analysis.

Voltammetry (VA)

Voltammetry is an electrochemical method for the determination of trace and ultratrace concentrations of heavy metals and other electrochemically active substances. Both benchtop and portable options are available with a variety of electrodes to choose from, allowing analysis in any situation.

A 5-part series about solid-state electrodes covers a range of new sensors suitable for the determination of «heavy metals» using voltammetric methods. This series offers information and example applications for the Bi drop electrode, scTrace Gold electrode (as well as a modified version), screen-printed electrodes, and the glassy carbon rotating disc electrode.

Come underwater with Metrohm and Hublot in our blog post as they try to find the missing pieces of the ancient Antikythera Mechanism in Greece with voltammetry.

If you’d like to learn about the combination of voltammetry with ion chromatography and the expanded application capabilities, take a look at our article about combined analysis techniques.

Electrochemistry (EC)

Electrochemistry plays an important role in groundbreaking technologies such as battery research, fuel cells, and photovoltaics. Metrohm’s electrochemistry portfolio covers everything from potentiostats/galvanostats to accessories and software.

Our two subsidiaries specializing in electrochemistry, Metrohm Autolab (Utrecht, Netherlands) and Metrohm DropSens (Asturias, Spain) develop and produce a comprehensive portfolio of electrochemistry equipment.

This year, the COVID-19 pandemic has been at the top of the news, and with it came the discussion of testing – how reliable or accurate was the data? In our blog post about virus detection with screen-printed electrodes, we explain the differences between different testing methods and their drawbacks, the many benefits of electrochemical testing methods, and provide a free informative White Paper for interested laboratories involved in this research.

Our electrochemistry instruments have also gone to the International Space Station as part of a research project to more efficiently recycle water on board spacecraft for long-term missions.

The History of…

Stories inspire people, illuminating the origins of theories, concepts, and technologies that we may have become to take for granted. Metrohm aims to inspire chemists—young and old—to be the best and never stop learning. Here, you can find our blog posts that tell the stories behind the scenes, including the Metrohm founder Bertold Suhner.

Bertold Suhner, founder of Metrohm.

For more history behind the research and development behind Metrohm products, take a look at our series about the history of IC at Metrohm, or read about how Mira became mobile. If you are more interested in process analysis, then check out the story about the world’s first process analyzer, built by Metrohm Process Analytics.

Need something lighter? Then the 4-part history of chemistry series may be just what you’re looking for.

Specialty Topics

Some articles do not fit neatly into the same groups as the rest, but are nonetheless filled with informative content! Here you can find an overview of Metrohm’s free webinars, grouped by measurement technique.

If you work in a regulated industry such as pharmaceutical manufacturing or food and beverage production, don’t miss our introduction to Analytical Instrument Qualification and what it can mean for consumer safety!

Industry-focused

Finally, if you are more interested in reading articles related to the industry you work in, here are some compilations of our blog posts in various areas including pharmaceutical, illicit substances, food and beverages, and of course water analysis. More applications and information can be found on our website.

Food and beverages
All of these products can be measured for total sulfite content.

Oxidation stability is an estimate of how quickly a fat or oil will become rancid. It is a standard parameter of quality control in the production of oils and fats in the food industry or for the incoming goods inspection in processing facilities. To learn more about how to determine if your edible oils are rancid, read our blog post.

Determining total sulfite in foods and beverages has never been faster or easier than with our IC method. Read on about how to perform this notoriously frustrating analysis and get more details in our free LC/GC The Column article available for download within.

Measuring the true sodium content in foodstuff directly and inexpensively is possible using thermometric titration, which is discussed in more detail here. To find out the best way to determine moisture content in foods, our experts have written a blog post about the differences between Karl Fischer titration and near-infrared spectroscopy methods.

To determine if foods, beverages, spices, and more are adulterated, you no longer have to wait for the lab. With Misa, it is possible to measure a variety of illicit substances in complex matrices within minutes, even on the go.

All of these products can be measured for total sulfite content.

Making high quality products is a subject we are passionate about. This article discusses improving beer brewing practices and focuses on the tailor-made system built for Feldschlösschen, Switzerland’s largest brewer.

Pharmaceutical / healthcare

Like the food sector, pharmaceutical manufacturing is a very tightly regulated industry. Consumer health is on the line if quality drops.

Ensuring that the analytical instruments used in the production processes are professionally qualified is a must, especially when auditors come knocking. Find out more about this step in our blog post about Analytical Instrument Qualification (AIQ).

Moisture content in the excipients, active ingredients, and in the final product is imperative to measure. This can be accomplished with different analytical methods, which we compare and contrast for you here.

The topic of virus detection has been on the minds of everyone this year. In this blog post, we discuss virus detection based on screen-printed electrodes, which are a more cost-effective and customizable option compared to other conventional techniques.

Water analysis

Water is our business. From trace analysis up to high concentration determinations, Metrohm has you covered with a variety of analytical measurement techniques and methods developed by the experts.

Learn how to increase productivity and profitability in environmental analysis laboratories with IC with a real life example and cost calculations, or read about how one of our customers in Switzerland uses automated Metrohm IC to monitor the water quality in shrimp breeding pools.

If heavy metal analysis is what you are interested in, then you may find our 5-part series about trace analysis with solid-state electrodes very handy.

Unwanted substances may find their way into our water supply through agricultural practices. Find out an easier way to determine herbicides in drinking water here!

Water is arguably one of the most important ingredients in the brewing process. Determination of major anions and cations along with other parameters such as alkalinity are described in our blog post celebrating International Beer Day.

All of these products can be measured for total sulfite content.
Illicit / harmful substances

When you are unsure if your expensive spices are real or just a colored powder, if your dairy products have been adulterated with melamine, or fruits and vegetables were sprayed with illegal pesticides, it’s time to test for food fraud. Read our blog post about simple, fast determination of illicit substances in foods and beverages for more information.

Detection of drugs, explosives, and other illegal substances can be performed safely by law enforcement officers and first responders without the need for a lab or chemicals with Mira DS. Here you can read about a real life training to identify a methamphetamine laboratory.

Drinking water regulations are put in place by authorities out of concern for our health. Herbicides are important to measure in our drinking water as they have been found to be carcinogenic in many instances.

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.