Select Page
Best practice for electrodes in Karl Fischer titration

Best practice for electrodes in Karl Fischer titration

Have you ever asked yourself why you need an electrode for the endpoint detection in Karl Fischer (KF) titration? Theoretically, the endpoint of a Karl Fischer titration could be determined based on the color change of the reagent. However, if accuracy and reproducibility are important, endpoint detection with a double Pt electrode is a much better choice.

As the indicator electrode detects the endpoint, you can imagine that the results depend highly on the condition of the electrode. In coulometry, an additional electrode (generator electrode) is used to generate the iodine needed for the titration. Both electrode types (i.e. indicator and generator electrode) need to be kept in good shape to guarantee the correct results. It goes without saying that cleaning, storage, maintenance, and checks of the KF electrodes are important factors for success. This blog post takes a closer look at these topics.

Did you catch our series about frequently asked questions in Karl Fischer titration? Find them here!

Cleaning

Indicator electrode

Double  Pt-wire or double Pt-ring electrodes can be easily cleaned with an abrasive cleaning agent like aluminum oxide powder or toothpaste. After cleaning, rinse the electrode well with water and let it dry before mounting it in a titration cell. Check out our video below for more tips and tricks about the proper cleaning procedure for Karl Fischer titration indicator electrodes.

Take special care not to bend the Pt pins of the double Pt-wire electrode. Bending the pins can lead to tiny cracks in the glass body of the electrode. Over time, reagent can flow into the electrode and lead to corrosion (short circuit). If this happens, the electrode is beyond repair and needs replacement. Alternatively, a double Pt-ring electrode can be used instead. Problems with bent pins are then a thing of the past.
Generator electrode
Without diaphragm
Rinse generator electrodes without diaphragms with water, or if the contaminant is not water soluble, then rinse with a suitable organic solvent. If the anode or the cathode of the generator electrode shows discoloration or deposits that cannot be removed with rinsing, the electrode can then be cleaned with concentrated nitric acid (65%). Be aware that nitric acid is a strong oxidizing agent and must be handled carefully according to relevant safety regulations and instructions. Remember to first mount the green protection cap on the connector to avoid corrosion caused by fumes of nitric acid. Afterwards, rinse the electrode with water and finally with methanol.
With diaphragm
To remove salt-like residues, the generator electrode with diaphragm can be rinsed with water. Oily contamination can be rinsed off with an organic solvent (e.g. hexane). Sticky residues on the diaphragm can be removed in the following way: 

  1. Mount the green protection cap on the connector of the electrode.
  2. Place the electrode in an upright position (e.g. in an Erlenmeyer flask) and add a few milliliters of concentrated nitric acid (65%) in the cathode chamber. Let the acid flow through the diaphragm.
  3. Fill the cathode chamber with water and let it flow through the diaphragm to remove the nitric acid. Repeat this step two or three times. A simple way to see whether another rinsing step is required is by performing a quick check of the pH value at the cathode using pH indication paper.
  4. Finally, fill the cathode chamber with methanol and let it flow out.

Now the generator electrode is as good as new and ready for use in a titration cell again.

Maintenance

Except for the generator electrode with diaphragm, KF electrodes are maintenance free. However, the catholyte filled in the generator electrode with diaphragm can decompose over time. To avoid any influence of the decomposition products on the results, exchange the catholyte on a regular basis according to the manufacturer’s recommendations.

Storage

Unlike pH electrodes, KF electrodes do not contain a glass membrane that could potentially dry out. Therefore, no special solution is required in which to store KF electrodes. If you use the electrodes frequently, it is recommended to keep the electrodes mounted in the titration cell and immersed in the KF reagent. Alternatively, all KF electrodes (indicator and generator electrodes) can be stored dry.

What to check for

It is recommended to check the complete titration setup instead of only the electrode(s).

Volumetry

Carry out a threefold titer determination using either a liquid or a solid water standard suitable for volumetry and calculate the mean value of the titer. Then, determine the water content of a water standard (also via triplicate determination). Make sure that you do not use the same standard as for the titer determination but use a different batch of the standard or even a completely different standard. Calculate the water content and compare it to the certified water content of the standard.

If the recovery is determined to be in the range of 97–103%, the titration system (including the electrode) is working fine. Finding values outside this range means that there is something wrong with the titration system or with the determination procedure. Results of the sample analysis would very likely also deviate from the real water content. Therefore, it is important to find the reason for values that are too high or too low. Sometimes the reason for deviations is just an air bubble in the dosing cylinder or due to an exhausted molecular sieve. However, if you do not find the reason, do not hesitate to contact your local Metrohm agency.

Coulometry

Water standards with lower water contents (0.1%) are available to properly check the health of coulometric titration systems. Carry out a water content determination in triplicate with such a standard. Calculate the recovery with the obtained results and the certified water content of the standard.

A recovery value in the range between 97–103% means that everything is fine with the system and that the electrodes work as expected. As with volumetry, in coulometry it is important to find the reason for any deviating recovery values. Make sure that you find and eliminate the problem to obtain correct results for your samples.

What you should avoid

  • Do not use solvents that contain ketones or aldehydes (e.g. denatured ethanol) to clean KF electrodes or any KF accessories.
  • Do not treat KF electrodes in an ultrasonic bath. This might destroy the electrode.
  • For drying, use a maximum temperature of 50 °C. Higher temperatures might damage the electrode.
  • Do not bend the Pt pins of the double Pt-wire electrode.

Summary

As you can see, keeping your KF electrodes in good shape is actually very simple. Regular cleaning helps to avoid erroneous results and ensures that your Karl Fischer electrodes will work for a long time.

Best practice for electrodes in titration

Treat your sensors right!
Post written by Michael Margreth, Sr. Product Specialist Titration (Karl Fischer Titration) at Metrohm International Headquarters, Herisau, Switzerland.
Chemistry of Fireworks

Chemistry of Fireworks

Developed nearly two millennia ago in ancient China, fireworks are increasingly used in cultural celebrations around the world and enjoyed by nearly all ages. As one of the most entertaining forms of chemistry, fireworks appeal to our senses of sight and sound, offering a staggering variety of colors, sizes, shapes, sounds, and so on. We love to watch fireworks because they take our breath away with their magnificence and mystery.

However it is not all fun and games. The business of fireworks (and the field of pyrotechnics in general) is very serious since they should be made as safe as possible to use and also environmentally friendly. Beyond fireworks, other pyrotechnics are found in all kinds of entertainment, like in concerts, movies, and more serious applications for defense and security (e.g., safety measures like flares and signal lights).

What are fireworks made of?

Early fireworks were quite dangerous and were used for protection rather than for celebrations, and hardly resemble the ones we are now familiar with.

It all began back in Ancient China with the invention of gunpowder, which was created from a mixture of charcoal, sulfur, and saltpeter (potassium nitrate). Eventually, as new developments were made to increase the safety and predictability of using these early fireworks, experimentation with colors began and people started using them more for nonviolent purposes. Now there is an entire industry devoted to the development of all kinds of fireworks for consumers and professionals alike.

Learn more about the history of fireworks in the links below:

A firework, or aerial shell as it is also known, basically consists of three main parts aside from the housing: gunpowder and an igniter to make the rocket explode, and inside of the transported capsule on the top there are small garniture pods usually called «stars» (despite being shaped like spheres or cylinders) that include various chemicals for the desired effects. Stars consist of a colorant, a fuel, an oxidizer (oxygen providing substance, e.g., chlorates or nitrates), and a binder to hold the ingredient mixture together in a compact briquette.

The industry has spent a significant amount of time in development to make fireworks explode in shapes like stars and stripes, hearts, or even more complex forms like a cartoon figure, or letters and numbers if timed correctly.

Cross-sectional diagram of a firework capsule filled with star garnitures (72) and igniter (70). [1]

Forming a rainbow of colors

The vibrant colors of fireworks come from the combustion of metal ions which make up to 20% of the components. Metals have been used to color flames even before the invention of modern fireworks (e.g. Bengal fire). Chemically speaking, these metal ions change their electronic state by heating (addition of energy) and then going back to a lower energy state before emitting light of a certain color.

Table 1. List of metals used in pyrotechnics and their colors [2].

Color

Metal

Example compounds

Red

Strontium (intense red)

SrCO3 (strontium carbonate)

Lithium (medium red)

Li2CO3 (lithium carbonate)

LiCl (lithium chloride)

Orange

Calcium

CaCl2 (calcium chloride)

Yellow

Sodium

NaNO3 (sodium nitrate)

Green

Barium

BaCl2 (barium chloride)

B3N3 (boron nitride)

Blue

Copper halides

CuCl2 (copper chloride), at low temperature

Indigo

Cesium

CsNO3 (cesium nitrate)

Violet

Potassium

KNO3 (potassium nitrate)

Rubidium (violet-red)

RbNO3 (rubidium nitrate)

Gold

Charcoal, iron, or carbon black

 

White

Titanium, aluminum, beryllium, or magnesium powders

 

Very prominent here is the yellow color from sodium which is also seen in older street lightbulbs in some countries. Unfortunately, the most vibrant colors formed are also the most toxic for the environment, like strontium (red) and barium (green). These contaminants can be measured in the air, water, and even in the soil—but more on that later.

Find out more information about how fireworks get their colors in the links below:

Safety first

Safety is always a critical issue when discussing fireworks, whether concerning their construction, their use, or their storage. Too many serious accidents have happened over the years involving fireworks.

Learn more about how to handle fireworks in a safe manner here:

Among one of the largest fireworks disasters recorded in Europe was in Enschede (The Netherlands) in 2000. This explosion occurred in the warehouse of the S.E. Fireworks factory, which was located in the center of a residential area as the city grew and continued to build homes around it. An entire neighborhood was razed and the largest of the explosions was felt up to 30 kilometers away.

Because of this incident, sales of larger fireworks in most European countries is only allowed outdoors. Accumulating fireworks at home in preparation for celebrations should be avoided at least in confined environments like basements or apartments. It is better to store them in a ventilated shed or car parking to avoid problems in the case of a fire. Also do not store fireworks for long periods, since most of commercial fireworks are meant to be used within 3–6 months after production because the paper contents can get humid, ionic substances can dissolve and recrystallize, and therefore the likelihood of a failure increases.

In the event of a firework failure: Never have a look immediately! Wait at least 15 minutes at a proper distance and then use a tool to confine it afterwards—never touch it with your bare hands, especially when dealing with exploding fireworks or rockets.

Having said this, fireworks have integrated some safety features over the last several years to work more properly and reliably. For instance, the propellants have been modified from containing black powder to using technology from rockets such as plasticizers for better burning performance during launch, also resulting in less smoke and dust on the ground. A dedicated chain of reactions has to be followed, otherwise it will burn in a harmless way.

Knowledge is power: Prevent accidents with proper analytical testing

In order to help prevent fireworks accidents such as the one in Enschede and countless others, it is crucial to closely monitor different quality parameters including the water content of paper-based fireworks, grain size of the metal particles, and the purity and composition of the colorant, just to mention a few. Adequate quality control provides an entertaining, but safe fireworks experience even in the hands of the general public, when proper protocols are followed.

Metrohm offers several analytical technologies and related applications for this area of research. Analyses can be performed for a wide variety of substances and quality parameters as well as trace materials in the laboratory, on the street, and in the air either via wet chemical methods (e.g., Karl Fischer titration, ion chromatography, voltammetry) or spectroscopic techniques (e.g., near-infrared spectroscopy [NIRS] and Raman spectroscopy).

As mentioned earlier, moisture is an important quality parameter when discussing the safety of explosive materials. Metrohm offers two different techniques for accurate analysis of water content in a variety of matrices which are outlined in the following blog posts.

When it comes to determining the individual concentrations of the main constituents, some wet chemical techniques really stand out. Suppressed anion chromatography is ideal for measuring the ionic components of e.g., firecracker powder, other explosive material, and even in explosion residues for forensic purposes. Coupling an ion chromatograph to a mass spectrometer (IC-MS) opens up even more analysis possibilities. Read more about these studies (and more) by downloading our free Application Notes.

The use of several different metal salts to create the vibrant colors of fireworks can be beautiful but also harmful to our health and that of our environment. Voltammetry (VA) is an electrochemical method suitable for the determination of trace and ultratrace concentrations of heavy metals and other electrochemically active substances. Not only is VA excellent at determining these substances in the laboratory, but also in the field such as for measuring the after effects of a fireworks display or an undesired event. Check out our selection of VA instruments and applications on our website.

Spectroscopic techniques like Raman can help to determine the presence of dangerous explosive materials even when keeping a safe distance by using different instrument attachments. Read our free White Paper about how to use MIRA DS from Metrohm Raman for the purpose of identifying explosives safely.

Environmentally friendly fireworks – a contradiction?

Although fireworks are a very spectacular form of entertainment, there is quite an environmental impact after big cultural events or national holidays. The general atmospheric pollution after a fireworks display has been set off can be seen in an increase of dust and smoke, but also heavy metal content in the air as most contemporary fireworks use these for coloring.

The unburnt material still contains a significant amount of heavy metals. After falling to the ground, this material can dissolve and enter the ground water after it rains. Plastics materials that covered the fireworks for safety reasons are found again as broken shell shrapnel or as microplastics. The combustion of the compounds inside the fireworks leads to increased air pollution in form of aerosols that can be measured and evaluated resulting in heavy metals in the air, fine dust, and even nanoparticles which are extremely harmful for our lungs.

Metrohm Process Analytics has developed the 2060 MARGA (Monitor for AeRosols and Gases in ambient Air) which is used by official agencies and research bodies worldwide to monitor the air quality fully autonomously. This instrument is based on the analytical technique of ion chromatography and can be used as a dedicated continuous air monitoring device that can be left unattended for several weeks at a time, or as a research instrument that can be used for other projects when not monitoring the air quality.

Learn more about the 2060 MARGA and its capabilities in our blog post.

To find out more about the use of Metrohm instruments to monitor the air quality, check out this selection of peer-reviewed articles.

A new «green» firework generation is being developed for both professional and indoor use to try to minimize the heavy metal content and also reduce aerosol forming agents. This makes them more suitable for indoor pyrotechnic shows and for movie production. In regular outdoor shows (e.g. at theme parks), the gunpowder for transport of the capsule has mostly been substituted with an air pressure gun mechanism.

A significant amount of research has gone into substituting heavy metal-based colorants with more environmentally benign substances by increasing the luminosity of lithium derivatives by substituting them for strontium, or by using boron instead of barium or chlorinated compounds.

Finally, the plastic parts commonly used to surround fireworks are planned to be substituted by microcrystalline cellulose mixtures with better plasticizing binders. This leads to a similar stability compared to the current plastic materials, but the cellulose-based containers burn up completely and do not leave harmful materials scattered on the ground.

The future of fireworks shows

All safety measures increase the joy of fireworks not only during, but also after the event—being green and being safe. Foretelling the future, some of these celebrations may now use a cadre of lighted drones in a choreographed dance. This has been happening more steadily as drones fall in price and increase in their handling and programming capabilities. However, fireworks have already been with us for a couple of thousand years, and probably will not disappear any time soon.

Download our free Application Notes

and White Papers related to explosives and propellants

Post written by Dr. Norbert Mayr (Ph.D. in the field of HEDM, pyrotechnics, propellants, and oxidizers), Marketing Specialist & Product Training at Metrohm International Headquarters, Herisau, Switzerland.

Supercharge your battery research – Part 1

Supercharge your battery research – Part 1

Replacing traditional fuel-powered vehicles with battery-powered options is essential to reduce carbon dioxide (CO2) emissions. This greenhouse gas results from the combustion of fossil fuels, therefore limiting its input into the atmosphere will also influence global warming. Battery research therefore focuses on discovering new materials with higher energy and power density as well as a more efficient energy storage.

Various critical parameters need to be determined to develop viable new batteries. In this first of two blog posts, I want to highlight a few of the analytical parameters which can be determined using high precision analytical instruments from Metrohm and provide some free downloads in this research area.

What’s in a lithium battery?

Today, lithium ion batteries are the most common rechargeable batteries available on the market. A battery consists of an anode (negative pole) and cathode (positive pole). An electrolyte facilitates charge transfer in the form of lithium ions between these two poles. Meanwhile a separator placed between anode and cathode prevents short-circuits. An example cross section can be seen in Figure 1.

Figure 1. Cross-section illustration of a lithium ion battery. While the battery is being charged, lithium ions migrate from the cathode to the anode (from right to left), and during discharging they move from the anode to the cathode (from left to right).

The anode is made from graphite containing intercalated lithium applied to a copper foil, while the cathode consists of metal oxides dotted with lithium ions applied to an aluminum foil. The most common transition metals used in cathode materials are cobalt, nickel, manganese, or iron. The electrolyte is an anhydrous aprotic solvent containing a lithium salt (e.g., lithium hexafluorophosphate) to facilitate charge transfer. The separator is prepared from a porous material, acting as an insulator to prevent short-circuits. The composition of all of these components has a significant influence on the battery characteristics.

After this brief overview about the composition of a lithium battery, let’s take a look at selected key parameters and how they can be analyzed.

Water content in battery raw materials

Lithium-ion batteries should be free of water (concentration of H2O less than 20 mg/kg), because water reacts with the conducting salt (e.g., LiPF6) to form toxic hydrofluoric acid. Sensitive coulometric Karl Fischer titration is the ideal method for determining water content at trace levels. Water determination for solids is carried out using the Karl Fischer oven method – the residual moisture in the sample is evaporated and transferred to the titration cell where it is subsequently titrated. The working principle and advantages of the KF oven method are described in more detail in our blog post «Oven method for sample preparation in Karl Fischer titration».

For more details on how to carry out the water determination in one of the following battery components, download our free Application Bulletin AB-434:

 

  • raw materials for the manufacture of lithium-ion batteries
  • electrode coating preparations (slurry) for anode and cathode coating
  • the coated anode and cathode foils as well as in separator foils and in packed foil layers
  • electrolytes for lithium-ion batteries

Transition metal composition of cathode materials

The cathode of a lithium-ion battery is usually made from metal oxides derived from cobalt, nickel, manganese, iron, or aluminum. To produce the cathode, solutions containing the desired metal salts are used. For an optimized production process, the exact content of the metals present in the solution must be known. Additionally, the metal composition within the obtained cathode material should be determined. Potentiometric titration is a suitable technique to determine the metal content in starting solutions and the finished cathode materials.

The following mixtures of metals or metal oxides can be analyzed potentiometrically:

  • Nickel, cobalt, and manganese in solutions
  • Nickel, cobalt, and manganese in cathode materials such as cobalt tetraoxide (Co3O4), lithium manganite, or lithium cobaltite

For more details about the potentiometric analysis of a mixture of nickel, cobalt, and manganese download our free Application Note AN-T-218.

Analysis of lithium salts

Potentiometric titration is also ideally suited for determining the purity of lithium salts. For lithium hydroxide and lithium carbonate, the purity is determined using an aqueous acid-base titration. It is also possible to determine carbonate impurity within lithium hydroxide using this method.

For more details about performing the assay of lithium hydroxide and lithium carbonate, download our free Application Note AN-T-215.

For the assay of lithium chloride and lithium nitrate, the lithium is directly titrated using the precipitation reaction between lithium and fluoride in ethanolic solutions. For more details about how to carry out the assay of lithium chloride, download Application Note AN-T-181 and for lithium nitrate download AN-T-216.

The knowledge of other cations which might be present in lithium salts (and their concentration) is also of interest. Various cations (e.g., sodium, ammonium, or calcium) can be determined using ion chromatography (IC). IC is an efficient and precise multi-parameter method to quantify anions and cations over a wide concentration range.

The chromatogram in Figure 2 shows the separation of lithium, sodium, and calcium in a lithium ore processing stream.

Figure 2. Ion chromatogram of the lithium ore processing stream (1: lithium, 23.8 g/L; 2: sodium, 1.55 g/L; 3: calcium, 0.08 g/L).

For more information on how this analysis was carried out, download our free Application Note AN-C-189.

Eluated ions and decomposition products

In the development and optimization of lithium-ion batteries, one of the items of special interest is the content of ions (e.g., lithium, fluoride, and hexafluorophosphate) in the electrolyte or in eluates of different components. Ion chromatography allows the determination of decomposition products in electrolyte, or anions and cations eluated for example from finished batteries. Additionally, any sample preparation steps that might be required (e.g., preconcentration, dilution, filtration) can be automated with the Metrohm Inline Sample Preparation («MISP») techniques.

For more detailed information about selected IC applications for battery research, check out our Application Notes:

  • Cations in lithium hexafluorophosphate (AN-C-037)
  • Trace cations in lithium hexafluorophosphate (AN-CS-011)
  • Anions in electrolyte (AN-N-012)
  • Decomposition products of lithium hexaflurophosphate (AN-S-372)

Summary

This blog post contains only part of the analyses for battery research which are possible using Metrohm’s analytical instruments. Part 2 discusses the electrochemical characterization of batteries and their raw materials. Click below to read it!

Battery research

Positive experiences with top quality Metrohm equipment!

Post written by Lucia Meier, Technical Editor at Metrohm International Headquarters, Herisau, Switzerland.

Chemistry of Chocolate

Chemistry of Chocolate

Swiss… Belgian… Pure… Milk…

Here we are in mid-February again, bombarded by chocolate from all sides in preparation for Valentine’s Day on the 14th. Whether in a solid bar, as a chewy truffle, or as a luxurious drink, chocolate has completely infiltrated our lives. Most people can agree that this confectionary treat is fantastic for any occasion – to be given as a gift, to recover after having a bad day, as well as to celebrate a good one – chocolate is certainly meant to be enjoyed.

Even if you don’t like the taste, the chances are high that someone close to you does. So how can you be certain of its quality?

Components of a chocolate bar

For the sake of this article, let us consider the humble chocolate bar, without any extra additions (not to mention any Golden Tickets). This form can be found worldwide in nearly any grocery store or candy shop, generally designated as white, milk, or dark.

All of this variability comes from the edible seeds in the fruit of the cacao tree, which grows in hot, tropical regions around the equator. They must be fermented and then roasted after cleaning. From this, cocoa mass is produced, which is a starting base for several uses. Cocoa butter and cocoa solids are prepared from the cocoa mass and are utilized in products ranging from foods and beverages to personal care items.

As for chocolate bars, these are generally sweetened and modified from the pure form, which is very bitter. Milk (liquid, condensed, or powdered) is added to many types, but does not necessarily have to be present. Varying the content of the cocoa solids and cocoa butter in chocolate to different degrees results in the classifications of dark to white. While some dark chocolates do not contain any milk, white chocolates do to add to the significant amounts of cocoa fat used to produce them.

In general, dark chocolate contains a high ratio of cocoa solids to cocoa butter and may or may not contain any milk. It may be sweetened or unsweetened. Milk chocolate is a much broader category, containing less cocoa solids but not necessarily a different cocoa butter content compared to dark chocolate, as milk fats are also introduced. Milk chocolate is also sweetened, either with sugar or other substitutes. White chocolate contains no cocoa solids at all, but a blend of cocoa butter and milk, along with sweeteners.

Depending on the country, there are different regulations in place regarding the classification of the type of chocolate. If you are interested, you can find a selection of them here.

What makes your favorite chocolate unique?

Of course, more ingredients are added to chocolate bars to affect a number of things like the aroma, texture/mouthfeel, and certainly to enhance the flavor. The origin of the cacao beans, much like coffee, can impart certain characteristics to the resulting chocolate. The manufacturing process also plays a major part in determining e.g., whether the chocolate has a characteristic snap or has a distinct scent, setting it apart from other brands.

In some cases, vegetable fats are used to replace a portion of the cocoa fats, although this may not legally be considered «chocolate» in some countries. The adjustment of long-standing recipes for certain chocolate brands has sometimes led to customer backlash, as quality is perceived to have changed. Truly, chocolate is inextricably tied to our hearts.

Applications for chocolate quality analysis

Nobody wants to give their Valentine a bad gift, especially out-of-date chocolate from a dubious source. Here, we have prepared some interesting analyses for different chocolate quality parameters in the laboratory.

Sugar analysis via Ion Chromatography (IC)

Most types of chocolate contain sugars or sugar substitutes to sweeten the underlying bitterness. Considering different regulations regarding food labeling and also nutritional content, the accurate reporting of sugars is important for manufacturers and consumers alike.

Sugar analysis in chocolate can be performed with Metrohm IC and Pulsed Amperometric Detection (PAD). An example chromatogram of this analysis is given below.

A small amount of commercially produced sweetened milk chocolate was weighed and dissolved into ultrapure water. After further sample preparation using Metrohm Inline Ultrafiltration, the sample (20 µL) was injected on to the Metrosep Carb 2 – 150/4.0 separation column and separated using alkaline eluent. As shown, both lactose and sucrose elute without overlap in less than 20 minutes.

Learn more about Metrohm Inline Ultrafiltration for difficult sample matrices and safeguard your IC system!

In this example, the sugar content was listed on the label as 47 g per 100 g portion (470 g/kg). Lactose was determined to be 94.6 g/kg, and sucrose was measured at 385.6 g/kg. To learn about what other carbohydrates, sweeteners, and more can be determined in chocolate and other foods with Metrohm IC, download our free brochure about Food Analysis and check out the table on page 25!

Lactose content in lactose-free chocolate

The accurate measurement of lactose in lactose-free products, including chocolate, is of special importance to consumers who are lactose-intolerant and suffer from digestive issues after eating it. Foods which are labelled as lactose-free must adhere to guidelines concerning the actual non-zero lactose content. Foodstuff containing less than 0.1 g lactose per100 g (or 100 mL) is most frequently declared as lactose-free.

Determination of lactose in chocolate is possible with IC. Here is an chromatographic overlay of a dissolved chocolate sample with lactose spikes which was analyzed via Metrohm IC using the flexiPAD detection mode.

Milk chocolate, labelled lactose-free measured via Metrohm IC (0.57 ± 0.06 mg/100 g lactose, n = 6).

The sample contained 0.6 mg lactose per 100 g, with measurement of the lactose peak occurring at 13.2 minutes. The black line is the unspiked lactose-free chocolate sample, red and blue are spiked samples of increasing concentration. To prepare the samples, approximately 2.5–5 g chocolate was dissolved in heated ultrapure water, using Carrez reagents to remove excess proteins and fats from the sample matrix. Afterward, centrifugation of the samples was performed, followed by the direct injection of the supernatant (10 µL) into the IC system. Measurement was performed with the Metrosep Carb 2 – 250/4.0 separation column and an alkaline eluent.

Interested in lactose determinations with ion chromatography? Download our free Application Notes on the Metrohm website!

Water determination with Karl Fischer Titration

The amount of water in foods, including chocolate, can affect their shelf life and stability, as well as contribute to other physical and chemical factors. Aside from this, during the processing stage, the amount of water present affects the flow characteristics of the chocolate mass.

AOAC Official Method 977.10 lists Karl Fischer titration as the accepted analysis method for moisture in cacao products.

The determination of moisture in different chocolate products is exhibited in the following downloadable poster. As an example, several samples (n = 10) of dark chocolate (45% cocoa content) were analyzed for their moisture content with Metrohm Karl Fischer titration.  Results were found to be 0.96% water with a relative standard deviation (RSD) of 2.73%. More information about this analysis can be found in our poster about automated water determination in chocolate, or in chapter 11.6 of our comprehensive Monograph about Karl Fischer titration.

Oxidation stability with the Rancimat test

Oxidation stability is an important quality criterion of chocolate as it provides information about the long-term stability of the product. Cocoa contains various flavonoids that act as antioxidants. Although the flavonoid content may vary amongst chocolate type, in general, the greater the content of cocoa solids in the chocolate, the greater its antioxidant effect.

The 892 Professional Rancimat from Metrohm determines the oxidation stability of fat-containing foods and cosmetics. The Rancimat method accelerates the aging process of the sample and measures the induction time or oxidation stability index (OSI).

Chocolate cannot be measured directly with the classical Rancimat method, as no evaluable induction time is obtained. There are many reasons for this: e.g., the fat content is too low. Traditionally, extraction of the fat from the chocolate is necessary, but not always.

Learn more about the Rancimat method on our website, and download our free Application Note about the oxidation stability of chocolate. In this Application Note, the oxidation stability of white, milk and dark chocolate is determined without extraction.

Cadmium in chocolate by Voltammetric analysis

The toxic element cadmium (Cd) can be found in elevated concentrations with high bioavailability in some soils. Under such conditions, cacao trees can accumulate cadmium in the beans. Chocolate produced from the affected beans will contain elevated cadmium levels.

Typical limit values for Cd in chocolate in the European Union are between 100 µg/kg and 800 µg/kg (EU Commission Regulation 1881/2006) depending on the cocoa content of the chocolate. Anodic stripping voltammetry (ASV) can be used to accurately determine trace quantities of cadmium in chocolate down to approximately 10 µg/kg. The method is simple to perform, specific, and free of interferences.

Chocolate samples are first mineralized by dry ashing in a furnace at 450 °C for several hours. The remaining ash is then dissolved in an acidified matrix. The cadmium determination is then carried out on the 884 Professional VA instrument from Metrohm. To learn more about how to perform the analysis, download our free Application Note.

Happy Valentine’s Day from us all at Metrohm!

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.

ASTM D6304: Easier determination of moisture in petroleum products

ASTM D6304: Easier determination of moisture in petroleum products

Water in petroleum products, such as lubricating oils, jet fuel, or other similar products can have deleterious effects. Moisture is often associated with corrosion and engine wear. Knowing the water content of petroleum products can prevent damage to costly infrastructure and ensure safer operations.

ASTM D6304 «Standard Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration» is a standard that is often cited for moisture determination in the specifications of various petroleum products. It has been recently updated (January 2021) and now offers three procedures for accurate moisture determination.

The direct sample injection into the titration cell (Procedure A) is recommended for low viscosity samples without expected interferences. An oven (Procedure B) or water evaporator accessory (Procedure C) can be used to analyze samples that do not readily dissolve in Karl Fischer reagent, viscous samples, and samples with components that are expected to interfere with the Karl Fischer reaction.

In this blog post I want to introduce these three procedures, and then discuss when it is appropriate to use each of them.

Determining the moisture content in petroleum products doesn’t have to be messy. Visit our website to learn more about the new automated measurement capabilities allowed with ASTM D6304.

A coulometric Karl Fischer Titrator such as the 851 Titrando from Metrohm is the basis for all three procedures of ASTM D6304.

Direct injection (Procedure A)

The direct sample injection into the titration cell is recommended for low viscosity samples without expected interferences. An aliquot of known mass or volume is injected into the conditioned titration cell of a coulometric Karl Fischer apparatus, where it is titrated automatically, and the results calculated.

Method D6304 permits the use of coulometric generator electrodes with and without diaphragm. We recommend the use of the generator electrode with diaphragm, due to the low water content of the samples.

Not all petroleum products are soluble in Karl Fischer reagent and phase separation can occur when using Procedure A. If phase separation occurs, the reagents need to be replaced. The number of samples which can be analyzed without phase separation depends on the volume and type of sample, the volume of reagent, and the sample solubility in the reagent.

The generator electrode with diaphragm is recommended for water determination according to ASTM D6304 Procedure A.

However, for these kinds of samples, Procedures B or C are often the better solution. The same is the case if your sample contains interfering substances.

For more information about ASTM D6304 Procedure A, download our free Application Bulletin (AB-209). For more tips and tricks about how to improve your Karl Fischer titration, have a look at our blog series: «Frequently asked questions in Karl Fischer titration».

Water extraction using an oven (Procedure B)

An oven (Procedure B) can be used to analyze samples that do not readily dissolve in Karl Fischer reagent, viscous samples, and samples with components that are expected to interfere with the Karl Fischer reaction.

For the analysis, a representative sample is weighed into a glass vial, which is sealed immediately. The vial is then heated in an oven to extract any water. The vaporized water is carried into the conditioned Karl Fischer titration cell by means of a dry carrier gas where it is titrated.

Schematic drawing of the Karl Fischer oven method.

The ideal temperature used for the evaporation depends on the sample. The 874 Oven Sample Processor can perform a temperature gradient test to determine the optimal temperature for removing water without degrading the sample.

To learn more about the oven method, its working principle and its advantages, check out our blog post: «Oven method for sample preparation in Karl Fischer titration».

Watch our LabCast video below to see the working principle and advantages of using Procedure B.

For more information about using the KF oven method for ASTM D6304 Procedure B, download our free Application Bulletin (AB-209) or free Application Note (AN-K-070).

Just want the highlights? Have a look at our short flyer about how ASTM D6304 has become much easier!

Water extraction using an evaporator (Procedure C)

Instead of using an oven, Procedure C explains how a water evaporator can be used for the water extraction of samples that do not readily dissolve in Karl Fischer reagent, viscous samples, and samples with components that are expected to interfere with the Karl Fischer reaction.

In this procedure, an aliquot of sample is transferred into a heated chamber containing a suitable solvent (most often, toluene). The temperature of the heated chamber depends on the solvent used. The water vaporizes along with the solvent in an azeotrope distillation. The azeotrope is then transferred into the conditioned Karl Fischer titration cell via a dry non-reactive carrier gas. 

Schematic drawing of the evaporator method.

If you wish to read more about the three procedures and their advantages and disadvantages, download our White Paper: «Moisture in petroleum products according to ASTM D6304».

When to use which procedure

Procedure A is mainly suited for liquid samples with a low viscosity, such as diesel fuel, jet fuel, or aromatics. A low viscosity is required in order to be able to add the sample easily into the Karl Fischer titration cell. Furthermore, the samples require a good solubility in Karl Fischer reagent. Otherwise phase separation will occur, which requires the replacement of the Karl Fischer reagents. While the reagent exchange can be automated, time is still required until the reagents reach dryness again.

Even if samples are soluble in Karl Fischer reagents, there might still be issues with using Procedure A due to the sample matrix creating side reactions and thus false results. In this case Procedure B or C are the better option.

Procedure B is suitable for all kinds of samples, regardless of their viscosity or matrix composition. It is only the evaporated water that is transferred into the titration cell, leaving the sample as well as interfering matrix components remaining in the sealed vial, which can be simply disposed of after the analysis. For this reason, the reagent exchange frequency is greatly reduced, saving costs, as less reagent is required. Depending on the workload in your lab, it is even possible to fully automate the analysis including reagent exchange using an automated Karl Fischer oven.

The 874 Karl Fischer Oven Processor with an 851 Titrando for a fully automated analysis according to ASTM D6304 Procedure B.

Procedure C, like Procedure B, is suitable for all kinds of samples, regardless of their viscosity or matrix constitution. It is only the evaporated water in an azeotrope with the solvent that is transferred into the titration cell. The sample, as well as interfering matrix components, remain in the evaporation chamber. However, it is necessary to manually empty and refill the evaporation chamber from time to time, which is time consuming, as the chamber needs to cool down before the content can be exchanged. Furthermore, walk-away automation is not possible with this method.

For a more detailed comparison of the various factors for each procedure, download our free White Paper: «Moisture in petroleum products according to ASTM D6304».

Visit our website

Save time with the new automated measurement capabilities allowed with ASTM D6304

Post written by Lucia Meier, Technical Editor at Metrohm International Headquarters, Herisau, Switzerland.