Select Page
«Analyze This»: 2020 in review

«Analyze This»: 2020 in review

I wanted to end 2020 by thanking all of you for making «Analyze This» – the Metrohm blog for chemists such a success! For our 60th blog post, I’d like to look back and focus on the wealth of interesting topics we have published this year. There is truly something for everyone: it doesn’t matter whether your lab focuses on titration or spectroscopic techniques, or analyzes water samples or illicit substances – we’ve got you covered! If you’re looking to answer your most burning chemical analysis questions, we have FAQs and other series full of advice from the experts. Or if you’re just in the mood to learn something new in a few minutes, there are several posts about the chemical world to discover.

We love to hear back from you as well. Leaving comments on your favorite blog posts or contacting us through social media are great ways to voice your opinion—we at Metrohm are here for you!

Finally, I wish you and your families a safe, restful holiday season. «Analyze This» will return on January 11, 2021, so subscribe if you haven’t already done so, and bookmark this page for an overview of all of our articles grouped by topic!

Stay healthy, and stay curious.

Best wishes,

Dr. Alyson Lanciki, Scientific Editor, Metrohm AG

Quickly jump directly to any section by clicking a topic:

Customer Stories

We are curious by nature, and enjoy hearing about the variety of projects where our products are being used! For some examples of interesting situations where Metrohm analytical equipment is utilized, read on.

From underwater archaeological research to orbiting Earth on the International Space Station, Metrohm is there! We assist on all types of projects, like brewing top quality beers and even growing antibiotic-free shrimp – right here in Switzerland.

Interested in being featured? Contact your local Metrohm dealer for details!


Metrohm is the global market leader in analytical instruments for titration. Who else is better then to advise you in this area? Our experts are eager to share their knowledge with you, and show this with the abundance of topics they have contributed this year to our blog.

For more in-depth information about obtaining the most accurate pH measurements, take a look at our FAQ about pH calibration or read about avoiding the most common mistakes in pH measurement. You may pick up a few tips!

Choose the best electrode for your needs and keep it in top condition with our best practices, and then learn how to standardize titrant properly. Better understand what to consider during back-titration, check out thermometric titration and its advantages and applications, or read about the most common challenges and how to overcome them when carrying out complexometric titrations

If you are interested in improving your conductivity measurements, measuring dissolved oxygen, or the determination of oxidation in edible fats and oils, check out these blog posts and download our free Application Notes and White Papers!

Finally, this article about comprehensive water analysis with a combination of titration and ion chromatography explains the many benefits for laboratories with large sample loads. The history behind the TitrIC analysis system used for these studies can be found in a separate blog post.

Karl Fischer Titration

Metrohm and Karl Fischer titration: a long history of success. Looking back on more than half a century of experience in KFT, Metrohm has shaped what coulometric and volumetric water analysis are today.

Aside from the other titration blog posts, our experts have also written a 2-part series including 20 of the most frequently asked questions for KFT arranged into three categories: instrument preparation and handling, titration troubleshooting, and the oven technique. Our article about how to properly standardize Karl Fischer titrant will take you step by step through the process to obtain correct results.

For more specific questions, read about the oven method for sample preparation, or which is the best technique to choose when measuring moisture in certain situations: Karl Fischer titration, near-infrared spectroscopy, or both?

Ion Chromatography (IC)

Ion chromatography has been a part of the Metrohm portfolio since the late 1980s. From routine IC analysis to research and development, and from stand-alone analyzers to fully automated systems, Metrohm has provided IC solutions for all situations. If you’re curious about the backstory of R&D, check out the ongoing series about the history of IC at Metrohm.

Metrohm IC user sitting at a laboratory bench.

Common questions for users are answered in blog posts about IC column tips and tricks and Metrohm inline ultrafiltration. Clear calculations showing how to increase productivity and profitability in environmental analysis with IC perfectly complement our article about comprehensive water analysis using IC and titration together for faster sample throughput.

On the topic of foods and beverages, you can find out how to determine total sulfite faster and easier than ever, measure herbicides in drinking water, or even learn how Metrohm IC is used in Switzerland to grow shrimp!

Near-Infrared Spectroscopy (NIRS)

Metrohm NIRS analyzers for the lab and for process analysis enable you to perform routine analysis quickly and with confidence – without requiring sample preparation or additional reagents and yielding results in less than a minute. Combining visible (Vis) and near-infrared (NIR) spectroscopy, these analyzers are capable of performing qualitative analysis of various materials and quantitative analysis of a number of physical and chemical parameters in one run.

Our experts have written all about the benefits of NIR spectroscopy in a 4-part series, which includes an explanation of the advantages of NIRS over conventional wet chemical analysis methods, differences between NIR and IR spectroscopy, how to implement NIRS in your laboratory workflow, and examples of how pre-calibrations make implementation even quicker.

A comparison between NIRS and the Karl Fischer titration method for moisture analysis is made in a dedicated article.

A 2-part FAQ about NIRS has also been written in a collaboration between our laboratory and process analysis colleagues, covering all kinds of questions related to both worlds.

Raman Spectroscopy

This latest addition to the Metrohm family expands the Metrohm portfolio to include novel, portable instruments for materials identification and verification. We offer both Metrohm Raman as well as B&W Tek products to cover a variety of needs and requirements.

Here you can find out some of the history of Raman spectroscopy including the origin story behind Mira, the handheld Raman instrument from Metrohm Raman. For a real-world situation involving methamphetamine identification by law enforcement and first responders, read about Mira DS in action – detecting drugs safely in the field.

Mira - handheld Raman keeping you safe in hazardous situations.

Are you looking for an easier way to detect food fraud? Our article about Misa describes its detection capabilities and provides several free Application Notes for download.

Process Analytics

We cater to both: the laboratory and the production floor. The techniques and methods for laboratory analysis are also available for automated in-process analysis with the Metrohm Process Analytics brand of industrial process analyzers.

Learn about how Metrohm became pioneers in the process world—developing the world’s first online wet chemistry process analyzer, and find out how Metrohm’s modular IC expertise has been used to push the limits in the industrial process optimization.

Additionally, a 2-part FAQ has been written about near-infrared spectroscopy by both laboratory and process analysis experts, which is helpful when starting out or even if you’re an advanced user.

Finally, we offer a 3-part series about the advantages of process analytical technology (PAT) covering the topics of process automation advantages, digital networking of production plants, and error and risk minimization in process analysis.

Voltammetry (VA)

Voltammetry is an electrochemical method for the determination of trace and ultratrace concentrations of heavy metals and other electrochemically active substances. Both benchtop and portable options are available with a variety of electrodes to choose from, allowing analysis in any situation.

A 5-part series about solid-state electrodes covers a range of new sensors suitable for the determination of «heavy metals» using voltammetric methods. This series offers information and example applications for the Bi drop electrode, scTrace Gold electrode (as well as a modified version), screen-printed electrodes, and the glassy carbon rotating disc electrode.

Come underwater with Metrohm and Hublot in our blog post as they try to find the missing pieces of the ancient Antikythera Mechanism in Greece with voltammetry.

If you’d like to learn about the combination of voltammetry with ion chromatography and the expanded application capabilities, take a look at our article about combined analysis techniques.

Electrochemistry (EC)

Electrochemistry plays an important role in groundbreaking technologies such as battery research, fuel cells, and photovoltaics. Metrohm’s electrochemistry portfolio covers everything from potentiostats/galvanostats to accessories and software.

Our two subsidiaries specializing in electrochemistry, Metrohm Autolab (Utrecht, Netherlands) and Metrohm DropSens (Asturias, Spain) develop and produce a comprehensive portfolio of electrochemistry equipment.

This year, the COVID-19 pandemic has been at the top of the news, and with it came the discussion of testing – how reliable or accurate was the data? In our blog post about virus detection with screen-printed electrodes, we explain the differences between different testing methods and their drawbacks, the many benefits of electrochemical testing methods, and provide a free informative White Paper for interested laboratories involved in this research.

Our electrochemistry instruments have also gone to the International Space Station as part of a research project to more efficiently recycle water on board spacecraft for long-term missions.

The History of…

Stories inspire people, illuminating the origins of theories, concepts, and technologies that we may have become to take for granted. Metrohm aims to inspire chemists—young and old—to be the best and never stop learning. Here, you can find our blog posts that tell the stories behind the scenes, including the Metrohm founder Bertold Suhner.

Bertold Suhner, founder of Metrohm.

For more history behind the research and development behind Metrohm products, take a look at our series about the history of IC at Metrohm, or read about how Mira became mobile. If you are more interested in process analysis, then check out the story about the world’s first process analyzer, built by Metrohm Process Analytics.

Need something lighter? Then the 4-part history of chemistry series may be just what you’re looking for.

Specialty Topics

Some articles do not fit neatly into the same groups as the rest, but are nonetheless filled with informative content! Here you can find an overview of Metrohm’s free webinars, grouped by measurement technique.

If you work in a regulated industry such as pharmaceutical manufacturing or food and beverage production, don’t miss our introduction to Analytical Instrument Qualification and what it can mean for consumer safety!


Finally, if you are more interested in reading articles related to the industry you work in, here are some compilations of our blog posts in various areas including pharmaceutical, illicit substances, food and beverages, and of course water analysis. More applications and information can be found on our website.

Food and beverages
All of these products can be measured for total sulfite content.

Oxidation stability is an estimate of how quickly a fat or oil will become rancid. It is a standard parameter of quality control in the production of oils and fats in the food industry or for the incoming goods inspection in processing facilities. To learn more about how to determine if your edible oils are rancid, read our blog post.

Determining total sulfite in foods and beverages has never been faster or easier than with our IC method. Read on about how to perform this notoriously frustrating analysis and get more details in our free LC/GC The Column article available for download within.

Measuring the true sodium content in foodstuff directly and inexpensively is possible using thermometric titration, which is discussed in more detail here. To find out the best way to determine moisture content in foods, our experts have written a blog post about the differences between Karl Fischer titration and near-infrared spectroscopy methods.

To determine if foods, beverages, spices, and more are adulterated, you no longer have to wait for the lab. With Misa, it is possible to measure a variety of illicit substances in complex matrices within minutes, even on the go.

All of these products can be measured for total sulfite content.

Making high quality products is a subject we are passionate about. This article discusses improving beer brewing practices and focuses on the tailor-made system built for Feldschlösschen, Switzerland’s largest brewer.

Pharmaceutical / healthcare

Like the food sector, pharmaceutical manufacturing is a very tightly regulated industry. Consumer health is on the line if quality drops.

Ensuring that the analytical instruments used in the production processes are professionally qualified is a must, especially when auditors come knocking. Find out more about this step in our blog post about Analytical Instrument Qualification (AIQ).

Moisture content in the excipients, active ingredients, and in the final product is imperative to measure. This can be accomplished with different analytical methods, which we compare and contrast for you here.

The topic of virus detection has been on the minds of everyone this year. In this blog post, we discuss virus detection based on screen-printed electrodes, which are a more cost-effective and customizable option compared to other conventional techniques.

Water analysis

Water is our business. From trace analysis up to high concentration determinations, Metrohm has you covered with a variety of analytical measurement techniques and methods developed by the experts.

Learn how to increase productivity and profitability in environmental analysis laboratories with IC with a real life example and cost calculations, or read about how one of our customers in Switzerland uses automated Metrohm IC to monitor the water quality in shrimp breeding pools.

If heavy metal analysis is what you are interested in, then you may find our 5-part series about trace analysis with solid-state electrodes very handy.

Unwanted substances may find their way into our water supply through agricultural practices. Find out an easier way to determine herbicides in drinking water here!

Water is arguably one of the most important ingredients in the brewing process. Determination of major anions and cations along with other parameters such as alkalinity are described in our blog post celebrating International Beer Day.

All of these products can be measured for total sulfite content.
Illicit / harmful substances

When you are unsure if your expensive spices are real or just a colored powder, if your dairy products have been adulterated with melamine, or fruits and vegetables were sprayed with illegal pesticides, it’s time to test for food fraud. Read our blog post about simple, fast determination of illicit substances in foods and beverages for more information.

Detection of drugs, explosives, and other illegal substances can be performed safely by law enforcement officers and first responders without the need for a lab or chemicals with Mira DS. Here you can read about a real life training to identify a methamphetamine laboratory.

Drinking water regulations are put in place by authorities out of concern for our health. Herbicides are important to measure in our drinking water as they have been found to be carcinogenic in many instances.

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.

Electrochemistry in orbit

Electrochemistry in orbit

For over twenty years now, there has been continuous human occupation off our planet.

The International Space Station (ISS), launched in 1998, is a modular satellite in low orbit around the Earth, which is visible even with the naked eye.

Since November 2, 2000, the ISS has had a constantly revolving crew from a variety of nations, working on projects to further push the boundaries of our knowledge. Aside from their important scientific duties, these astronauts must live their daily lives like us – exercising, relaxing, cleaning, and sleeping – albeit in microgravity.

The International Space Station celebrated 20 years of constant habitation in November, 2020.

In October, an Antares rocket carrying a Cygnus resupply ship was launched by NASA at Johnson Space Center. This cargo ship carried an experimental system on board used to study the oxidation of ammonia under microgravity conditions to convert urine into water on the ISS.

Improving this waste management system has far-reaching repercussions for longer exploratory missions where the weight of the payload must be optimized with the amount of water needed (which is heavy) to sustain life during the trip. Given the limited resources aboard a spaceship, the recovery of water from all processes is of great importance.

Future missions which may benefit from this study include trips to the moon (Artemis) and eventually to Mars (Orion).

This system uses Metrohm DropSens screen-printed electrodes (SPEs). The novel nanomaterial coating of the electrodes was developed by researchers at the University of Alicante in Spain in collaboration with the University of Puerto Rico. In this article, we would like to introduce the people behind the project and elaborate on the research they are doing in space with Metrohm products.

Meet the researchers

Dr. José Solla Gullón (Ph.D. 2003, Chemistry)

Dr. José Solla Gullón in his laboratory at the University of Alicante, with Metrohm DropSens and Metrohm Autolab products on the bench.

I am currently a Distinguished Researcher at the Institute of Electrochemistry of the University of Alicante, Spain. My research mainly focuses on the synthesis, characterization and electrochemical properties of different types of nanoparticles with well-defined size, composition, shape, and surface structure. My overall publication record includes about 175 publications (h-index 53). I have also given more than 250 contributions in international and national meetings.

Ms. Camila Morales Navas

Camila Morales Navas holding the Nanoracks 2U, where the electrochemical equipment is kept inside.

I am a senior graduate student in the Department of Chemistry at University of Puerto Rico (UPR). I am working on a research project in collaboration with NASA, titled «Elucidating the Ammonia Electrochemical Oxidation Mechanism via Electrochemical Techniques at the ISS», or «Ammonia Electrooxidation Lab at the ISS (AELISS)» for short. The purpose of this project is to improve the water processing system and to identify new technology for long-term missions in space.

The project is attributed to NASA-ESPCoR, University of Puerto Rico, University of Alicante, NuVant Systems, and Nanoracks, with support from Metrohm DropSens.

Read more about the project on the NASA website:

The AELISS project

For a brief overview by Camila and her graduate advisor, have a look at the video provided below by NASA:

Here, you can see the Metrohm DropSens instruments used for this study: the screen-printed carbon electrode (SPCE8X110) and its corresponding flow-cell (FLWCL8X1C).

The Metrohm DropSens 8X110 carbon SPE (left) and the FLWCL8X1C flow-cell (right).
Instrumentation setup for the AELISS project which was launched to the ISS in October, 2020.

How did the AELISS project begin?

About five years ago, the groups from the University of Alicante and the University of Puerto Rico (UPR) began working together on microgravity experiments which led them to collaborate again for this project, which now resides on the ISS.

The electrochemical oxidation of ammonia using platinum as a catalyst is a well-established reaction, first published almost two decades ago by José’s group. The ammonia is extremely sensitive to the surface structure of platinum. However, this is well-known on earth. How does this reaction process behave in a microgravity environment? The groups sought to determine this by performing experiments in the US using a special airplane which mimics weightlessness for brief periods by flying in a parabolic motion.

SPE modification process: droplets of platinum nanoparticle ink provided by the University of Alicante deposited on the carbon SPEs. Platinum acts as a catalyst for the oxidation reaction. Click image to enlarge.

At first, this was purely for research, but later Camila’s group in Puerto Rico thought more about its potential use in space. Urea from urine is converted to ammonia, which then goes through the electrochemical oxidation process, resulting in N2 gas, water, and energy. Perhaps it was possible to use this technology to improve the onboard water recovery and recycling system in the ISS and other spaceships?

Because the UPR group often writes research proposals that are funded by NASA, they are quite knowledgeable in this area regarding the project requirements, as well as what materials are allowed on board a mission. The UPR group has been working in conjunction with NASA for about 20 years.

Unassembled equipment: plastic protector frame (grey), Metrohm DropSens FLWCL8X1C electrochemical flow-cells with 8X110 carbon SPEs (blue/white), and Nanoracks 2U (green). Click image to enlarge.

Combining the expertise in ammonia oxidation research from José’s lab in Spain with the knowledge of Camila’s group in Puerto Rico about NASA’s engineering and safety requirements made the construction and realization of the complex AELISS project possible. However, launching something to the ISS isn’t without its issues…

Has the COVID-19 pandemic had a significant effect on the research? 

Camila Morales Navas assembling the AELISS equipment in the UPR laboratory. Click image to enlarge.

Aside from the usual problems and delays that can pop up during collaborative research projects, the introduction of a global pandemic at the last stages did not help the situation. The COVID-19 pandemic affected the timeline of the AELISS project, especially when it came to traveling and working within the extremely regulated environment of NASA. Additionally, Puerto Rico had already dealt with several large earthquakes and hurricanes in this period.

Keeping each other on track became difficult at times, particularly when Camila had to bring the entire setup back home to finish the engineering. In June, she was able to return to the laboratory and complete the project. However, the stressful part was not yet over because there was still a flight to NASA in the US, and with that the ever present threat of COVID-19 infection during travel.

One positive test result would mean a denial of entry – there can be no chance of infecting the ISS crew.

Ultimately, everything went to plan before and during the launch, and the instrumentation was sent to the International Space Station in October along with other precious cargo for the astronauts. Now that this part of the puzzle is finished, the rest of the work begins…

How will AELISS differ from similar experiments on Earth?

The final goal of this research is to determine how gravity affects the oxidation of ammonia, and also to test out different catalysts for the reaction in microgravity. While several other parameters can be adjusted in the lab such as pH, nanoparticle shape, and more – gravity is a universal constraint we cannot avoid. On Earth, we are only able to mimic the effects of microgravity for a few seconds with freefall. The previous collaboration between the groups in this project also involved performing experiments on special flights that allowed weightless conditions for less than 15 seconds at a time. This is certainly not enough time to draw long-term conclusions, and hence the push to launch the project into orbit. Only then can a true comparison be made, and conclusions drawn about the effects of gravity and the future applicability of this technology.

Dr. José Solla Gullón shown in his lab at the University of Alicante depositing Pt nanocubes on the 8X110 substrates which are used in the FLWCL8X1C electrochemical cell. Click image to enlarge.

One of the major concerns regarding this project is to achieve the most efficient conversion of waste urine into usable water for long-term space missions. Here, water recycling is a critical point. Also, it is important to note that the product of the oxidation of ammonia is nitrogen gas, but the behavior of gases is not the same on Earth as in space. Understanding how the N2 bubbles behave in the absence of gravity is a critical step to study.

Camila’s doctoral research project aims to answer these questions and more, using the realistic conditions of space rather than short periods of weightlessness in flight. So how did the researchers come to use Metrohm products?

There’s Something About Metrohm

So, why choose Metrohm over other providers? I asked José and Camila just what it was that drew them to our products.

«In my case, I have been working with Metrohm DropSens for many, many years. We have a very good collaboration, not only in the in the case of the nanomaterials, but also in the electrochemical cells, and the use of the screen-printed electrodes for electroanalysis. So, we have a very long history together

Dr. José Solla Gullón

Distinguished Researcher at the Institute of Electrochemistry, University of Alicante

Additionally, José mentioned that it was the fact that the electrochemical cells from Metrohm DropSens were very small, perfectly fitting into their conceptual system, which was another critical point. In fact, only cosmetic changes were needed to the products to be used in this project – all of the used materials were already approved for use by NASA..

For Camila, this was her first time using these products, and she found their out-of-the-box usage incredibly helpful.

«This was my first experience since José suggested it. And I trust them because they’re the people that really know about this subject

Camila Morales Navas

Senior graduate student in the Department of Chemistry, University of Puerto Rico

In the past, José has asked Metrohm DropSens several times to custom design SPEs for his research needs, and has always found them responsive and agreeable.

«I know that I can send an email and in two hours, I will have some response. This is wonderful for me. They are always open to new solutions

Dr. José Solla Gullón

Distinguished Researcher at the Institute of Electrochemistry, University of Alicante

We wish the very best to the research groups behind the ambitious AELISS project at the University of Puerto Rico and the University of Alicante. We at Metrohm are proud that our products can contribute to space exploration.

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.

Special thanks go to Dr. José Solla Gullón and Ms. Camila Morales Navas for their important research and taking time to contribute to this article.

Fresh shrimp – made in Switzerland?

Fresh shrimp – made in Switzerland?

Shrimp from Rheinfelden

SwissShrimp AG, based in Rheinfelden, Switzerland, is the largest producer of shrimp in Europe. Michael Siragusa, a chemist and Technical Operations Manager, introduced us to the company during a visit and explained why a fully automatic IC system from Metrohm plays the main role in monitoring water quality in the breeding pools.

SwissShrimp, which are locally grown without antibiotics, shown in the packaging available in some grocery stores in Switzerland.

An ideal location

Shrimp farms are usually associated with tropical fields, especially in Southeast Asia. Often, one also thinks of the dubious reputation these farms have due to their large ecological footprint. The SwissShrimp project in Rheinfelden shows that shrimp can also be produced on a large scale in Switzerland without exhausting nature and entirely without the use of antibiotics. According to Plant Manager Michael Siragusa, many individual factors are decisive for the success of the project. One of the most important of these is that SwissShrimp AG, at its Rheinfelden site, can cover a large part of the enormous power requirements for heating the breeding pools, at very favorable conditions, using heat from the nearby Swiss Salinen AG (Swiss Salt Works).

Inconspicuous: SwissShrimp produces its shrimp in this hall located in the middle of a green meadow.
The Swiss saltworks evaporate brine for salt production. Its waste heat supplies a large part of the energy for heating SwissShrimpʹs breeding pools.

Large technical effort

There is a tropical climate in the companyʹs large, inconspicuous hall: Shrimp of the species Litopenaeus vannamei (Pacific white shrimp) are raised in a total of 16 pools, each measuring 40 x 5 x 0.50 meters, on two floors. At a constant water temperature of 28 degrees Celsius, these pools each have up to 200,000 shrimp, with the animals in one pool all at roughly the same stage of development. SwissShrimp sources the larvae from special, certified breeders in Europe or the USA. It takes around six months before shrimp of up to 14 cm in length have developed from tiny larvae, which are barely two millimeters in size.

Densely stocked: Each of the 16 pools holds up to 200,000 shrimp.

Until the shrimp grow to full size, they are fed automatically with a special, organic dry feed. The grain size and composition of this feed varies depending on the stage of development. The dense stocking of the pools means that cleaning the water requires a great deal of effort. In a total of eight water circuits, the entire volume in the breeding pools is cleaned mechanically, biologically, and chemically 20 times a day using the latest filter technology; three percent of this volume is replaced daily. 

Waste recycling: The feed for the shrimp is mainly made from fish waste. The composition and grain size is precisely matched to the different development stages of the shrimp.

An IC system from Metrohm controls the water quality

«Water treatment is essential for us. We purify the water in our pools about 20 times per day.

In order to allow the shrimp to grow and keep the biological equilibrium of the plant, we have to keep a close eye on the toxic parameters… ammonium, nitrite, and nitrate.

If we performed this monitoring by an alternative method…, the 10 to 20 determinations would take the whole day, every day

Michael Siragusa

Technical Operations Manager, SwissShrimp AG

When it comes to monitoring the water quality in the breeding pools, a fully automated IC system from Metrohm comes into play: In the SwissShrimp company laboratory, the water of each of the 8 water circuits is examined daily for concentrations of toxic pollutants such as nitrite, nitrate, and ammonium, which are introduced into the water by the excretions of the shrimp.

Download our free Application Notes below to learn more about ion chromatography and the analysis of nitrite, nitrate, and phosphate in seawater from a shrimp farm.

In the company laboratory: The water quality is monitored fully automatically with a 930 Compact IC Flex, 940 Professional IC Vario, and 858 Professional Sample Processor. In order for the shrimp to thrive, it is important to detect any deteriorations in water quality at an early stage so that corrective measures can be initiated in good time. Altogether, around 2000 multi-parameter analyses are carried out annually at this measuring station.

On the other hand, saltwater parameters important for the shrimp to thrive are measured. These include chloride, sodium, magnesium, calcium, and potassium. Given the sheer number of parameters that need to be monitored, the advantage of ion chromatography comes into effect: IC is a multi-parameter method, i.e. several different parameters can be determined with a single measurement. In addition, not only does the analysis run automatically, but sample preparation with the inline ultrafiltration and dilution steps is also integrated into this process. In fact, SwissShrimp does not need a full laboratory assistant position thanks to Metrohmʹs automated analysis system.

Learn more here about Metrohm Inline Sample Preparation (MISP) for difficult sample matrices:

In the profit zone starting this year

The operation in Rheinfelden did not begin until 2018, and SwissShrimp is not yet operating profitably. However, production is expected to increase to 60 tons annually by the end of 2021. This is when the project, costing 25 million francs, would generate a profit for the first time. The company is currently investing in marketing in order to achieve this goal, because it is not yet well known that the best shrimp to be purchased in Switzerland come from Rheinfelden.

No frozen goods

Shrimp from Rheinfelden are a delicacy and are marketed as such, but only in Switzerland so far. Around 70 to 80 kilograms of shrimp currently leave the company every day, delivered only on order. The fresh shrimp are delivered directly to end customers and select markets of the two major Swiss retailers, Migros and Coop, via Priority Mail within 24 hours in special transport boxes specially developed for SwissShrimp with integrated Peltier cooling elements. On-site collection by the customer after ordering is also possible.

Fresh shrimp, grown daily on the northern border of Switzerland.

To learn more about the production of shrimp in Rheinfelden, visit the SwissShrimp website.

Further free Application Notes for the analysis of several ions in seawater via ion chromatography can be found on the Metrohm website.

Visit our website

to learn more about how automated IC analysis can help save valuable time in your lab

Post written by Roman Moser, Senior Editor and Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.

Making a better beer with chemistry

Making a better beer with chemistry

Lager or ale? Pale ale or stout? Specialty beer, or basic draft? This week, to celebrate the International Beer Day on Friday, August 7th, I have chosen to write about a subject near and dear to me: how to make a better beer! Like many others, at the beginning of my adult life, I enjoyed the beverage without giving much thought to the vast array of styles and how they differed, beyond the obvious visual and gustatory senses. However, as a chemist with many chemist friends, I was introduced at several points to the world of homebrewing. Eventually, I succumbed.

Back in 2014, my husband and I bought all of the accessories to brew 25 liters (~6.5 gallons) of our own beer at a time. The entire process is controlled by us, from designing a recipe and milling the grains to sanitizing and bottling the finished product. We enjoy being able to develop the exact bitterness, sweetness, mouthfeel, and alcohol content for each batch we brew.

Over the years we have become more serious about this hobby by optimizing the procedure and making various improvements to the setup – including building our own temperature-controlled fermentation fridge managed by software. However, without an automated system, we occasionally run into issues with reproducibility between batches when using the same recipe. This is an issue that every brewer can relate to, no matter the size of their operation.

Working for Metrohm since 2013 has allowed me to have access to different analytical instrumentation in order to check certain quality attributes (e.g., strike water composition, mash pH, bitterness). However, Metrohm can provide much more to those working in the brewing industry. Keep reading to discover how we have improved analysis at the largest brewery in Switzerland.

Are you looking for applications in alcoholic beverages? Check out this selection of FREE Application Notes from Metrohm:

Lagers vs. Ales

There are two primary classes of beer: lagers and ales. The major contrast between the two is the type of yeast used for the fermentation process. Lagers must be fermented at colder temperatures, which lends crisp flavors and low ester formation. However, colder processes take longer, and so fermentation steps can last for some months. Ales have a much more sweet and fruity palate of flavors and are much easier to create than lagers, as the fermentation takes place at warmer temperatures and happens at a much faster rate.

Comparison between the fermentation of lagers and ales.

Diving a bit deeper, there are several styles of beer, from light pilsners and pale ales to porters and black imperial stouts. The variety of colors and flavors depend mostly on the grains used during the mash, which is the initial process of soaking the milled grains at a specific temperature (or range) to modify the starches and sugars for the yeast to be able to digest. The strain of yeast also contributes to the final flavor, whether it is dry, fruity, or even sour. Taking good care of the yeast is one of the most important parts of creating a great tasting beer.

Brewing terminology

  • Malting: process of germinating and kilning barley to produce usable sugars in the grain
  • Milling: act of grinding the grains to increase surface area and optimize extraction of sugars
  • Mashing: releasing malt sugars by soaking the milled grains in (hot) water, providing wort
  • Wort: the solution of extracted grain sugars
  • Lautering: process of clarifying wort after mashing
  • Sparging: rinsing the used grains to extract the last amount of malt sugars
  • Boiling: clarified wort is boiled, accomplishing sterilization (hops are added in this step)
  • Cooling: wort must be cooled well below body temperature (37 °C) as quickly as possible to avoid infection
  • Pitching: prepared yeast (dry or slurry) is added to the cooled brewed wort, oxygen is introduced
  • Fermenting: the process whereby yeast consumes simple sugars and excretes ethanol and CO2 as major products

Ingredients for a proper beer

These days, beer can contain several different ingredients and still adhere to a style. Barley, oats, wheat, rye, fruit, honey, spices, hops, yeast, water, and more are all components of our contemporary beer culture. However, in Bavaria during the 1500’s, the rules were much more strict. A purity law known as the Reinheitsgebot (1516) stated that beer must only be produced with water, barley, and hops. Any other adjuncts were not allowed, which meant that other grains such as rye and wheat were forbidden to be used in the brewing process. We all know how seriously the Germans take their beer – you only need to visit the Oktoberfest once to understand!

Determination of the bitterness compounds in hops, known as «alpha acids», can be easily determined with Metrohm instrumentation. Check out our brochure for more information:

You may have noticed that yeast was not one of the few ingredients mentioned in the purity law, however it was still essential for the brewing process. The yeast was just harvested at the end of each batch and added into the next, and its propagation from the fermentation process always ensured there was enough at the end each time. Ensuring the health of the yeast is integral to fermentation and the quality of the final product. With proper nutrients, oxygen levels, stable temperatures, and a supply of simple digestible sugars, alcohol contents up to 25% (and even beyond) can be achieved with some yeast strains without distillation (through heating or freezing, as for eisbocks).

Improved quality with analytical testing

Good beers do not make themselves. For larger brewing operations, which rely on consistency in quality and flavor between large batch volumes as well as across different countries, comprehensive analytical testing is the key to success.

Metrohm is well-equipped for this task, offering many solutions for breweries large and small.

Don’t take it from me – listen to one of our customers, Jules Wyss, manager of the Quality Assurance laboratory at Feldschlösschen brewery, the largest brewery in Switzerland.

«I have decided to go with Metrohm, because they are the only ones who are up to such a job at all. They share with us their huge know-how.

I can’t think of any other supplier who would have been able to help me in the same way

Jules Wyss

Manager Quality Assurance Laboratory, Feldschlösschen Getränke AG

Previous solutions failed

For a long time, Jules determined the quality parameters in his beer samples using separate analysis systems: a titrator, HPLC system, alcohol measuring device, and a density meter. These separate measurements involved a huge amount of work: not only the analyses themselves, but also the documentation and archiving of the results all had to be handled separately. Furthermore, Jules often had to contend with unreliable results – depending on the measurement procedure, he had to analyze one sample up to three times in order to obtain an accurate result.

A tailor-made system for Feldschlösschen

Jules’ close collaboration with Metrohm has produced a system that takes care of the majority of the necessary measurements. According to Jules, the system can determine around 90% of the parameters he needs to measure. Jules’ new analysis system combines various analysis techniques: ion chromatography and titration from Metrohm as well as alcohol, density, and color measurement from another manufacturer. They are all controlled by the tiamo titration software. This means that bitterness, citric acid, pH value, alcohol content, density, and color can all be determined by executing a single method in tiamo.

Measurement of the overall water quality as well as downstream analysis of the sanitization process on the bottling line is also possible with Metrohm’s line of Process Analysis instrumentation.

Integrated analytical systems with automated capabilities allow for a «plug and play» determination of a variety of quality parameters for QA/QC analysts in the brewing industry. Sample analysis is streamlined and simplified, and throughput is increased via the automation of time-consuming preparative and data collection steps, which also reduces the chance of human error.

Something to celebrate: The Metrohm 6-pack (2018)

In 2018, Metrohm celebrated its 75 year Jubilee. At this time, I decided to combine my experience as a laboratory analyst as well as a marketing manager to brew a series of six different styles of beer for the company, as a giveaway for customers of our Metrohm Process Analytics brand, for whom I worked at the time. Each batch was brewed to contain precisely 7.5% ABV (alcohol by volume), to resonate with the 75 year anniversary. The array of ales was designed to appeal to a broad audience, featuring a stout, porter, brown ale, red ale, hefeweizen, and an India pale ale (IPA). Each style requires different actions especially during the mashing process, based on the type of grains used and the desired outcome (e.g., flavor balance, mouthfeel, alcohol content).

Bespoke bottle caps featuring the Metrohm logo.
The 6 styles of beers brewed as a special customer giveaway to celebrate the Metrohm 75 year Jubilee.

Using a Metrohm Ion Chromatograph, I analyzed my home tap water for concentrations of major cations and anions to ensure no extra salts were needed to adjust it prior to mashing. After some of the beers were prepared, I tested my colleagues at Metrohm International Headquarters in the IC department, to see if they could determine the difference between two bottles with different ingredients:

Overlaid chromatograms from IC organic acid analysis highlighting the differences between 2 styles of the Metrohm 75 year Jubilee beers.

The IC analysis of organic acids and anions showed a clear difference between the beers, allowing them to determine which sample corresponded to which style, since I did not label them prior to shipping the bottles for analysis. As the milk stout contained added lactose, this peak was very pronounced and a perfect indicator to use.

Metrohm ion chromatography, along with titration, NIRS, and other techniques, allows for reliable, comprehensive beer analysis for all.

In conclusion, I wish you a very happy International Beer Day this Friday. Hopefully this article has illuminated the various ways that beer and other alcoholic beverages can be analytically tested for quality control parameters and more  fast, easy, and reliably with Metrohm instrumentation.

For more information about the beer quality parameters measured at Feldschlösschen brewery, take a look at our article: «In the kingdom of beer The largest brewery in Switzerland gets a made-to-measure system». Cheers!

Read the full article:

«In the kingdom of beer – The largest brewery in Switzerland gets a made-to-measure system»

Post written by Dr. Alyson Lanciki, Scientific Editor (and «chief brewing officer») at Metrohm International Headquarters, Herisau, Switzerland.

The man behind Metrohm: Bertold Suhner

The man behind Metrohm: Bertold Suhner

On April 1 in 1943, Bertold Suhner founded Metrohm, in Herisau, Switzerland. Besides being our founder, he was a scientist, a sportsman, a painter, a pilot, and a philanthropist. We owe him a great company, and we are proud to serve the world with our legendary Swiss made instruments and application know-how – then and now.

Who was Bertold Suhner?

Bertold Suhner is mostly known for founding Metrohm. That makes sense—after all, Metrohm is the second largest employer in the Swiss canton of Appenzell Outer Rhodes and a successful global business. It’s impossible to overstate Metrohm’s importance for the Appenzell region and for analytical chemistry. However, reducing Suhner to Metrohm alone wouldn’t do him justice. His versatile interests and talents made him much more than an engineer, and his dedication to the community and the environment made him much more than the head of a company.

Bertold Suhner, founder of Metrohm.

Suhner was born in Herisau in 1910 as the son of a successful entrepreneur. After finishing school, he left his rural home region for Zurich. Here he studied mechanical engineering at the Swiss Federal Institute of Technology, which is one of the most renowned universities in Switzerland and in the world. But Suhner never lost the connection to his hometown Herisau. So, after having graduated, he returned to take up work at his father’s company. After some years, when Suhner was 33, he decided to start his own business. In 1943, Suhner and his friend Willi Studer founded Metrohm. Together with their team, they planned to manufacture measuring devices for high-frequency engineering and telecommunications.

Metrohm Headquarters in Herisau, Switzerland: 1943 and today.

A stoic leader

Suhner’s leadership style was paternalistic: though always open to ideas and ready to lend an ear, it was still he who made the final decisions. Not everyone always agreed with Suhner, including his co-founder Willi Studer. The two friends did not choose an easy moment in history to found their company; World War II was raging, and both money and materials were scarce. But the employees supported the company, and were eager to join forces and create something meaningful. Perhaps it was this test of stamina during the initial difficult years which laid the foundation stone for the later success of the company.

When the company debts exceeded the share capital by multiple times in 1947, Suhner decided to take steps to rationalize the company. Despite the difficult situation, he refused to take out further loans; the company would have to sink or swim on its own merits. As a matter of principle, Suhner refused to be dependent on banks. This dispute caused Willi Studer to leave the company after just four years, but it also established the sustainable business philosophy that is still alive at Metrohm today.


Willi Studer, co-founder of Metrohm.

Belief turns into success

Bertold Suhner, however, continued to believe that the company had a chance of succeeding. He took over the management of the company on his own, and shaped it according to his own vision. From the start, the company focused on organic growth rather than quick profits. Business strategies were never aligned to peak periods; instead, the company endeavored to grow slowly but surely. «My aim was always to keep the size of the company manageable, and create a solid base rather than just growing regardless of cost,» Suhner said. Over the course of its nearly 77-year history, this strategy is what has helped Metrohm to survive three recession periods.

The Metrohm workforce in 1953. Today, we have grown from a handful in the Appenzell region to thousands of employees around the globe.

Bertold Suhner responded to the trust demonstrated by his workforce by holding them in exceptionally high esteem: right from the start, he regarded them as more than mere employees. In 1968, when the company celebrated its 25th anniversary, Suhner wrote a text which summarized how he viewed his team:

«A single person can never take full credit for making a company successful. It is always teamwork that leads to success.»

Bertold Suhner

Founder, Metrohm AG

The Metrohm Foundation

Suhner retired from the operational management of Metrohm in 1968. However, he remained active in the background for several years. At the age of 72, Bertold Suhner stepped down from his position as CEO of Metrohm. However, he wanted to ensure that the company continued to exist in line with his vision; Metrohm was to remain an Appenzell-based company, and never lose its innovative spirit by merging or being sold off to a large corporation. As Suhner had no children, he needed to find another way to safeguard the future of the company.

 When he retired completely from Metrohm in 1982, he founded the «Metrohm Foundation» together with his business partners Hans Winzeler and Lorenz Kuhn. All company shares were then transferred to the nonprofit foundation. By initiating the Metrohm Foundation, Suhner was able to ensure Metrohm’s independence even after his resignation, while at the same time doing good for the local community. No longer dependent on profit-hungry shareholders and the pressure they exert, this enabled Metrohm to focus on its values and high quality standards – particularly with regard to the way in which people are treated.

Bertold Suhner (left) with Lorenz Kuhn, then head of marketing and distribution at Metrohm.

When the nonprofit Metrohm Foundation was created, supporting cultural and community projects became a fixture in the company: as sole shareholder of the Metrohm Group, the Metrohm Foundation is able to invest dividends in community projects. The choice of projects supported by the Foundation reflects the strong roots of the company in Eastern Switzerland. Today, the Foundation is one of the most important funding institutions for educational, cultural, and community projects. Amongst other things, it funds a chair for «New Materials» at Zurich University for Applied Sciences, and also supports the Association of Swiss Science Olympiads.

A Jack of All Trades

Despite his dedication to Metrohm, Suhner always found time to pursue other interests, and he had many of them. He may have been an engineer by profession, but his heart always beat for the nature and the natural sciences. He spent a lot of time in the mountains, mountaineering and skiing—both cross-country and alpine. Suhner also taught himself to play the organ and to paint. Matching his strong bond with nature, he painted landscapes in watercolors and in oil.

Perhaps it was these activities that ultimately defined him—much more than his academic achievements or his role at Metrohm. Even with regard to hiring new employees, he said:

«When I am faced with the task of selecting an employee, I am far more interested in his human qualities than in his technical knowledge. The hobby he pursues in his leisure hours is more important to me than what sort of education he enjoyed or what his testimonials contain. Of course specialized knowledge is essential, especially in a technical concern, but it is useless if it is not allied to human qualities.»

Bertold Suhner

Founder, Metrohm AG

After stepping down as the CEO of Metrohm, Suhner discovered his passion for mineralogy. This had started out as a collection of minerals and gemstones, but ultimately became his second career. Suhner’s thirst for knowledge made him take his new «hobby» so far that, at the age of 73, he obtained a Ph.D. from the University of Basel for his dissertation on the topic of infrared spectroscopy in mineralogy.

The philanthropist and environmentalist

Suhner always had strong ties to his hometown, Herisau, and to the Appenzell region at large. After Metrohm’s breakthrough, he had the financial means to give back to his home region. Cultural, environmental, and nonprofit causes could always count on his support. He even initiated a foundation for cultural purposes, the Bertold Suhner Foundation.

In this period of his life, Suhner became more and more convinced that humankind was causing damage to nature that was beyond repair. He tried to stop this and became active in the protection of nature. He again initiated a foundation specifically for his new cause: the Bertold Suhner Foundation for Nature, Animal, and Landscape Protection.

It’s not really surprising that Suhner pursued nature conservation with the same vigor that he had applied to all of his earlier undertakings, including Metrohm. But his unwillingness to compromise in environmental questions drove a wedge between Suhner and many of his friends and former colleagues, in particular those from political and business circles. In 1988, Suhner died from his worsening asthma at age 78. At that point, he was largely socially isolated.

Bertold Suhner: the person

Suhner never strove for financial wealth, recognition, or popularity. He always stuck to his principles, even if they were inconvenient, uncomfortable, or unpopular. You could call him a hardliner. But even though this sounds as though Suhner was fighting against the community, the contrary was the case: he was a dedicated philanthropist and environmentalist. He always tried to do what was best for society and for the environment.

What set him apart from others was that he didn’t shy away when this became uncomfortable.

Bertold Suhner (1910–1988).

Bertold Suhner built Metrohm around his ideas of independence and sustainability, and despite his departure from the company nearly 30 years ago, I still see Metrohm as a microcosm that is ruled by his values. Suhner’s strong values and his refusal to compromise didn’t always win him popularity prizes. But it’s probably safe to say that, without them, Metrohm wouldn’t be where it is now, as one of the world’s most trusted manufacturers of high-precision instruments for chemical analysis.

Learn more about Metrohm:

What sets us apart from the competition?

Not only our top quality products, but also our world-class experts!

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland. Primary research and content contribution done by Stephanie Kappes.