Select Page
NIR spectroscopy: a 21 CFR Part 11 compliant tool for QC and product screening

NIR spectroscopy: a 21 CFR Part 11 compliant tool for QC and product screening

Pharmacology: a brief history

Our search for medicines is nearly as old as humanity itself. Medicinal ingredients from plant, mineral, and animal sources were used for healing purposes since the earliest of advanced civilizations. Herbal remedies from China date back to a couple of thousand years ago, while indigenous populations have been relying on environmental sources for healing for several millennia. Systematic descriptions of medicines have been handed down to us from the ancient Greeks and the Roman Empire, laying a foundation for contemporary pharmacology. It was not until the 16th century that the science began its departure from the models passed down from antiquity.

The path to developing synthetic drugs began with the emergence of organic chemistry at the beginning of the 19th century. Although drug therapies had been limited to naturally occurring substances and inorganic compounds up to that point, this changed with the targeted production of organic synthetic drugs based on substances isolated from medicinal plants. Within a very short period, this led to a vast number of synthesized active pharmaceutical ingredients (APIs). Researchers had finally come to understand the relationship linking the action of these substances to their chemical structures.

Pharmaceutical analysis provides information about the identity, purity, content, and stability of starting materials, excipients, and APIs. Medicinal products come in various forms (e.g., ointments, tinctures, pills, lotions, suppositories, infusions, sprays, etc.) and consist of the active substance and at least one pharmaceutical excipient. Impurities are mainly introduced during the synthesis of the active ingredients.
According to the World Health Organization (WHO), specifications and test methods for commonly used active ingredients and excipients are outlined in detail in monographs contained in the national pharmacopoeias of more than 38 countries. The pharmacopoeias are official compendia containing statutory requirements pertaining to identity, content, quality, purity, packaging, storage, and labeling of active pharmaceutical ingredients and other products used for therapeutic purposes. They are essential for anyone seeking to produce, test, or market medicinal products.

Near-infrared spectroscopy—a 21 CFR Part 11 compliant tool to assess the quality of pharmaceuticals

Near-infrared spectroscopy (NIRS) has been an established method for fast and reliable quality control within the petrochemical industry for more than 30 years. However, many companies still do not consistently consider the implementation of NIRS in their QA/QC labs. The reasons could be either limited experience regarding application possibilities or a general hesitation about implementing new methods.

However, the advantages of NIRS are numerous, such as the ability to measure multiple parameters in just 30 seconds with no sample preparation! The non-invasive light-matter interaction used by NIRS, influenced by physical as well as chemical sample properties, makes it an excellent method for the determination of both property types.

In the remainder of this post, we will indicate where NIRS technology can be used in the pharmaceutical production process and what parameters can be analyzed. Furthermore, we present proven applications developed according the NIRS implementation guidelines of ASTM E1655 (quantitative method development) and ASTM E1790 (qualitative method development).

For more detailed information about NIRS as a secondary technique and NIRS as a QC tool for pharmaceuticals, please read our previous blog posts.

NIRS compliance with international pharmacopoeias

As a secondary test method, NIRS is recommended in all the key pharmacopoeias – European (Ph. Eur. 2.2.40) as well as American (USP<856/1856>) and Japanese pharmacopoeias (Chapter 6, since 2007).

All Metrohm NIRS instruments are fully compliant with USP <856/1856> and all the other key pharmacopoeias. Furthermore, all Metrohm NIRS instruments meet the standards for wavelength precision, reproducibility, and photometric noise. Numerous reference standards and user-friendly software make it easy to check the instrument requirements specified in the pharmacopoeias. The pharmaceutical version of the Vision Air software is fully validated and compliant with 21 CFR Part 11.

Find out more about Metrohm NIRS instruments for laboratory and process analysis below.

Where can NIRS be used in pharmaceutical manufacturing processes and what parameters can be analyzed?

NIRS is an indispensable analysis technique that can be used along the entire production chain: from checking the incoming materials to the production line, even to the quality control of finished products. A typical pharmaceutical tablet production process is shown in Figure 1 with markers noting where NIRS can be implemented.

Figure 1. Illustration of a pharmaceutical tablet production plant with NIRS used all along the process.
Typical NIRS applications at the different stages of the pharmaceutical production process are outlined in Figure 2.
Figure 2. NIRS analysis can be used at several points in the pharmaceutical manufacturing process for many types of applications.
Relevant application notes can be found on the Metrohm website.

Applications and parameters for NIRS in pharmaceutical production

NIR spectroscopy is the fast solution for determining myriad parameters simultaneously in almost any sample matrix. In addition, this technique requires no sample preparation, and it is non-destructive. Table 1 contains a list of different administered forms of medications given with commonly measured parameters and related materials to download for more information.

Table 1. NIRS can be used to determine several parameters in many kinds of administered forms of pharmaceuticals.
Substance form Parameter Conventional method Related NIRS Application Notes
Powders or granulates API, Moisture HPLC / GC / KF titration AN-NIR-018


Tablets and capsules API, Content uniformity, Moisture content, Dissolution profile HPLC / GC / KF titration AN-NIR-073




Creams or gels API, Moisture content HPLC / GC / KF titration AN-NIR-020
Solutions or suspensions API HPLC / GC AN-NIR-088


Injectables API HPLC / GC AN-NIR-042
Lyophilized products Moisture content KF titration AN-NIR-078
Following are a few examples of successfully implemented NIRS applications at numerous pharmaceutical companies worldwide.
Incoming (raw) material inspection

Raw material identification and qualification, shown in Figure 3, is one of the most mature applications in the pharmaceutical industry. Good manufacturing practice requirements demand that every single package unit that arrives in the warehouse needs to be checked.  Therefore, a rapid analytical technology as NIR spectroscopy is needed to measure many samples in a short period of time. NIRS is a general accepted alternative method by the USP.

Figure 3. Raw material inspection by NIR spectroscopy.
NIRS is an ideal analytical method for raw material inspection:

  • identify tests of APIs, excipients, packaging
  • quantitative control of materials (e.g., moisture)
  • GMP Requirement to test 100% of raw materials
  • quality control of materials (e.g., supplier, particle size, dyes)

Blending of APIs and excipients can be easily monitored without sample destruction by NIRS (Figure 4). This application focuses on the standard deviation between consecutive spectra. As the blending proceeds, the differences between consecutive spectra will become smaller and smaller, approaching unity. This parameter indicates when the blend is homogeneous. This information is important for operators to optimize the blending time and consequently increase the blending capacity of a facility.

Figure 4. Blending of APIs and excipients is easier to monitor with NIRS.
NIRS is an ideal analytical method for blending processes:

  • determination of blend homogeneity
  • sample spectra statistically compared to library of well blended material
  • optimized blending for improved operation of next production steps
Learn more about the Metrohm NIRS DS2500 Analyzer here.
Lyophilized products

Moisture determination in lyophilized products is an ideal application for NIRS (Figure 5). Typical water content of lyophilizates is somewhere between 0.5% and 3.0%. For many pharmaceutical lyophilized products, this value must be lower than 2.0%. Water is a strong NIR absorber, so detection limits are low and the demands of the pharmaceutical industry can be easily met.

Primary methods like loss on drying (LOD) or Karl Fischer titration are typically time-consuming, especially compared to NIRS (data in seconds). These samples have a relatively high value combined with a low moisture content. NIRS analysis only illuminates the sample so the same sample can be used for compendial analysis without any damage. This application has a quick return on investment (ROI) due to the high sample frequency.

Figure 5. Moisture determination in lyophilized products with NIRS is fast and cost-effective compared to other techniques.
NIRS is an ideal analytical method for measuring moisture in lyophilized products:

  • samples can be easily altered to provide calibration sets with varying amounts of moisture
  • complete analysis takes less than one minute and is non-destructive
Tablet analysis

When analyzing intact tablets with a NIR spectrometer, it is important to measure them in diffuse transmission mode. This illuminates a larger sample big portion and investigates the inner composition of the tablet (Figure 6). Measuring the same tablet in reflectance mode will gather the information from the outside coating of the tablet due to the low penetration depth. Content uniformity parameters are measured within a minute, and the tablet trays allow unattended measurement of up to 30 tablets.

Figure 6. NIRS allows fast determination of API content in intact tablets.
Learn more about the differences in NIRS measurement modes in our previous blog post.


Near-infrared spectroscopy has long been one of the most important and versatile analytical techniques in the pharmaceutical industry. The biggest benefit of using NIRS is the possibility of obtaining reliable analysis results in just seconds without any sample preparation or reagents required.

The pharmaceutical version of Vision Air software from Metrohm is 21 CFR Part 11 compliant and compatible with third party method development software like Unscrambler.

For more information

About spectroscopy solutions provided by Metrohm, visit our website!

We offer NIRS for lab, NIRS for process, as well as Raman solutions

Post written by Wim Guns, International Sales Support Spectroscopy at Metrohm International Headquarters, Herisau, Switzerland.
USP  – simple automated analysis of ultrapure water

USP <645> – simple automated analysis of ultrapure water

H2O – two simple elements, oxygen (O) and hydrogen (H), fuse together to form one of the most important molecules in the world: water. Water is everywhere on Earth and it is vital for our health and survival. It often contains other ions like calcium, magnesium, and chloride which are essential for the human body to function. However, in specific situations, ultrapure water (UPW) is needed to prepare e.g., injections or other solutions used in hospitals. How is the quality of UPW ensured so that it is always suitable for such medical purposes? The answer to this comes from USP <645>. This standard explains how the water quality can be determined and how this analysis must be performed.


For this analysis, a measuring device capable of measuring the conductivity and the pH value is required. If a combined device is not available, then using two separate ones is also fine. Then, a pH electrode that is especially suitable for the determination of the pH value of water and a conductivity cell for measurement of low conductivities is necessary. In this case, the Aquatrode plus and the stainless steel conductivity cell are recommended.

The Aquatrode plus responds very quickly in ion-deficient matrices (such as ultrapure water) and thanks to its double junction system, the bridge electrolyte can be chosen freely.
The stainless steel conductivity cell has been specially designed for measurements in samples with low conductivity. With a cell constant of c = 0.1 cm-1, it is ideal for conductivities ranging from 0–300 µS/cm. The built-in temperature sensor makes handling even easier as no additional sensor is needed for the temperature measurement.

USP <645> procedure

Now that the necessary instrumentation has been introduced, it’s time to take a look at the standard procedure itself. At first glance this looks a bit difficult as it is a three-step analysis, or actually a four-step analysis if you count the calibration as well.

Step 1: First, calibrate the pH electrode and the stainless steel conductivity cell (sensor). The pH electrode is calibrated with pH 4 and 7 solutions, whereas the stainless steel sensor is calibrated with a 100 µS/cm standard.

Find the standard solutions you need here:

Step 2: After calibrating the sensors, both the temperature of the water and the conductivity are measured without temperature compensation. If the measured conductivity is lower than the value mentioned in the table of USP <645>, then the requirement for the conductivity is met and the water can be used for medical purposes. If this is not the case, then step 3 must be performed.

Step 3: 100 mL water is transferred to an external titration vessel where its temperature is adjusted to 25 ± 1 °C. The water is stirred vigorously to incorporate carbon dioxide present in the air. If the conductivity does not change by more than 0.1 µS/cm per 5 minutes, the value is noted for further evaluation. If this value is below 2.1 µS/cm, then the water is usable for medical purposes. If not, then proceed with step 4.

Step 4: The solution is tempered to 25 ± 1 °C. Once the temperature is stable, 0.3 mL of saturated KCl solution is added and the pH of the water is measured. The pH value must lie between pH 5 and 7. If this is not the case, the water does not meet the requirements and must be discarded. If the pH is measured between 5 and 7, then the conductivity must additionally be lower as mentioned in the USP <645> table. If this is the case, the analysis passes and the water can be used for medical purposes.

Automation of USP <645>

The analysis can be quite time-consuming and therefore Metrohm has provided a solution to make this process much easier. Our system combines all of these steps into one method, allowing you to perform walk-away automation and focus on more important tasks.

To expand the capabilities of the measuring system, the 856/867 modules can be exchanged with a modular OMNIS Titrator which can also be used for other standard potentiometric titrations.

Take a closer look at our automated analysis solution

Proper electrode immersion depth
  • Aquatrode plus for accurate pH measurement in ion-deficient matrices
  • Stainless steel conductivity cell for low conducting samples
  • Special holder for performing step 2 of the standard procedure
  • Thermostated vessel (for step 2)
  • DIS-Cover lid to prevent the sample from CO2 uptake (before step 3)
  • Rod stirrer to saturate the solution with carbon dioxide (for step 3)


With this complete system, standard analysis of UPW quality according to USP <645> is performed in a fully automatic and reliable manner. At the end of each analysis a clear message is received if the deionized water (UPW) has passed the test or not. Handling is very easy and allows users to check if an analysis passes or not with just a glance.

Download our Application Bulletin

Automatic conductometry in water samples with low electrical conductivity in accordance with USP<645>
Post written by Iris Kalkman (Product Specialist Titration) and Heike Risse (Product Manager Titration – Automation), Metrohm International Headquarters, Herisau, Switzerland.
Nonaqueous acid-base titrations – Common mistakes and how to avoid them

Nonaqueous acid-base titrations – Common mistakes and how to avoid them

Nonaqueous acid-base titrations are widely used in several industries, including the petrochemical  and pharmaceutical sectors. Whether you are determining the acid or base number (AN or BN) in oils or fats, titrating substances that are insoluble in water, or quantifying products with different strengths of acidity or alkalinity separately, nonaqueous acid-base titration is the method of choice.

If you already have some experience performing nonaqueous acid-base titrations, you may remember that there are several challenges to overcome in comparison to aqueous acid-base titrations.

In this blog post, I would like to cover some of the most typical issues that could pop up during nonaqueous acid-base titrations and discuss how to best avoid them. An important point to note is that there is no single solution regarding how to perform any nonaqueous acid-base titration correctly. The right procedure depends highly on the solvent and titrant used.

What is a nonaqueous acid-base titration?

Before discussing nonaqueous titrations, first let’s talk a little bit about aqueous acid-base titrations.

Here, a sample is dissolved in water, and depending of the nature of the sample (whether it is acidic or basic) a titration is performed either using aqueous base or aqueous acid as titrant. For indication, a glass pH electrode is used.

However, sometimes due to the nature of the sample, aqueous titration is not possible. Nonaqueous acid-base titration is used when:

  • the substance of interest is not soluble in water
  • samples are fats or oils
  • components of mixtures of acids or bases have to be determined separately by titration

In these cases, a suitable organic solvent is used to dissolve the sample instead of water. The solvent:

  • should dissolve the sample and not react with it
  • permits the determination of components in a mixture
  • if possible, should not be toxic

The solvents that are most often used include ethanol, methanol, isopropanol, toluene, and glacial acetic acid (or a mixture of these). Titrants are not prepared with water but rather in solvent. Frequently used nonaqueous basic titrants are potassium hydroxide in isopropyl alcohol or sodium hydroxide in ethanol, and a common nonaqueous acidic titrant is perchloric acid in glacial acetic acid.

Due to the nature of nonaqueous solvents, they are normally poor conductors and do not buffer well. This makes indication a bit challenging because the electrode must be suitable for such sample types. Therefore, Metrohm offers the Solvotrode which is developed specifically for nonaqueous titrations.

This pH electrode offers the following advantages over a standard pH electrode:

  • Large membrane surface and a small membrane resistance for accurate reading, also in poorly buffered solutions
  • A flexible ground-joint diaphragm which can easily be cleaned even when contaminated with oily or sticky samples, additionally it offers a symmetrical outflow for outstanding reproducibility
  • The electrode is shielded and is therefore less sensitive to electrostatic interferences
  • It can be used with any nonaqueous electrolyte such as lithium chloride in ethanol

In the following sections I will discuss the most common mistakes when performing potentiometric nonaqueous acid-base titrations and how you can avoid them.

Electrostatic effects

The influence of electrostatic effects during analysis is normally negligible. However, maybe you have once seen a curve like the one below which looks relatively normal until suddenly a spike occurs.

Figure 1. Titration curve with a spike which might have occurred from an electrostatic interference.

This is then an indication of an electrostatic effect. However, where does it come from and how can we overcome this?

Electrostatic charge can be generated from many sources, such as friction. For example, while walking across a surface you will generate an electrostatic charge which will be stored in your body. You have probably touched the doorknob after walking across a carpeted space in your socks and obtained a small electric shock—this is the discharge of built up electrostatic charge. If we now assume that you are electrostatically charged and then you approach an electrode that is currently measuring (in use), this will result in a spike (Figure 1). Therefore, it is essential to make sure that you are either properly discharged or that you do not approach the electrode during measurement. You can avoid this issue by wearing the appropriate clothes. ESD (electrostatic discharge) clothes and shoes are mostly recommended when performing nonaqueous titrations.

Blocked diaphragm

A blocked diaphragm is another point which occurs more regularly during nonaqueous titrations. Due to the oily and sticky sample, you might have seen that the electrode diaphragm is clogged and cannot be opened anymore. What should you do then?

In most cases, you can place the electrode in a beaker of warm water overnight. This treatment often helps to loosen the diaphragm. To completely prevent the diaphragm from clogging, a Solvotrode with easyClean technology should be used. With this electrode, electrolyte is released by pressing the head ensuring that the diaphragm is not blocked.

Choice of electrolyte and storage solution

We recommend two types of electrolyte for nonaqueous titrations.

For titrations with alkaline titrants: tetraethylammonium bromide c(TEABr) = 0.4 mol/L in ethylene glycol

For titrations with acidic titrants: lithium chloride c(LiCl) = 2 mol/L in ethanol

Please make sure to store the electrode in the same electrolyte with which it is filled.

Checking the electrode according to ASTM D664

To check whether the Solvotrode is still in good working condition, perform a test according to ASTM D664 using aqueous buffer solutions of pH 4 and 7. The procedure is as follows:

  • Measure the potential of buffer pH 4.0 while stirring and note the value after 1 minute
  • Remove the electrode and rinse it well with deionized water
  • Measure the potential of buffer pH 7.0 while stirring and note the value after 1 minute
  • Calculate the mV difference between the reading of buffers 4.0 and 7.0
  • The difference must be larger than 162 mV (20–25 °C) to indicate an electrode in good shape

If the measured potential difference is less than 162 mV, the electrode requires maintenance. Lift the flexible sleeve of the ground-joint diaphragm to let some electrolyte flow out. Repeat the measurement according to the steps above. If the value is still less than 162 mV, clean the electrode or replace it.

Proper rinsing and cleaning

Proper rinsing is essential if you want to obtain reliable results. Otherwise, the curve might flatten and the equivalence points are no longer recognizable. Figure 2 illustrates this phenomenon well.

Figure 2. Different determinations according to ASTM D664. With time, the start potential of the curves shifts which indicates an unsuitable cleaning procedure.

The sample is the same, however, you see that the equivalence point and starting potential begin to shift and the curves become flatter. This indicates an improper cleaning procedure between measurements. The corresponding electrode is shown in Figure 3.

Figure 3. Appearance of the electrode used in Figure 2 after five measurements.

This electrode was certainly not cleaned properly! Anyone who performs a nonaqueous titration must consider which solvent might best dissolve the residue—this is not an issue that other analysts can easily solve due to the nature of each individual sample. However, do not ignore an electrode with such an appearance.

Conditioning the glass membrane correctly

As you may remember from our previous blog post about pH measurement, it is essential that the hydration layer of the glass membrane stays intact. Nonaqueous solvents dehydrate the glass membrane rather quickly. A change in the hydration layer can have an impact on the measured potential, therefore it is important that the hydration layer is always in the same state before starting a titration to achieve the most reproducible results.

Proper electrode immersion depth

This can be established with a conditioning step of the glass membrane to rebuild the hydration layer. However, if the solvent is able to remove the hydration layer faster than it takes to perform a titration, this can lead to ghost equivalence points. Therefore, the electrode should be completely dehydrated and kept like this for all further titrations.


Polar solvents (e.g., ethanol, acetone, isopropyl alcohol, or mixtures with toluene)

Water-free solvents (e.g., dimethylformamide, acetonitrile, acetic anhydride, or mixtures of these)

Preparation of electrode

Store only the pH membrane (not the diaphragm) in deionized water overnight to build up a proper hydration layer.

Lift the flexible sleeve to allow some electrolyte to flow out.

Dehydrate the pH membrane by placing only the pH membrane (not the diaphragm) in the solvent you will use afterwards for titration.

Lift the flexible sleeve to allow some electrolyte to flow out.

Conditioning of glass membrane Place the pH membrane (bulb only) into deionized water for 1 minute. Place the pH membrane (bulb only) into the corresponding solvent for 1 minute.
Rinsing procedure Rinse electrode with 50–70% ethanol. If this does not help, use a suitable solvent to rinse the electrode and then clean afterwards with 50–70% ethanol. Rinse electrode with glacial acetic acid. If this does not help, use a suitable solvent to rinse the electrode and then clean afterwards with glacial acetic acid.
Remarks Make sure to always keep the bulb of the electrode in deionized water for the same time duration, otherwise the thickness of the hydrated layer (and therefore the response) may vary. Avoid any contact of the electrode with water as this can induce a reaction with the solvent causing ghost equivalence points and irreproducible results.

Maintenance of burets

It is not only the electrode that needs some special attention when performing nonaqueous titrations, but also the electrical buret. Some special maintenance is required since alkaline nonaqueous titrants are especially aggressive and they tend to crystallize, therefore leakage of the buret is likely.

The buret must be maintained on a regular basis according to the manufacturer’s instructions. Metrohm recommends the following procedure:

  • For shorter titration breaks, it is recommended to refill the cylinder with titrant (especially with OMNIS)
  • Clean the buret with deionized water at the end of the day
  • Lubricate the cylinder unit on the centering tube and on the cylinder disc

Also check the corresponding manual of the buret. The most important points are mentioned there which will lead to a longer working life of the buret.

Thermometric titration as an alternative

One alternative to using potentiometric nonaqueous acid-base titration is thermometric titration (TET), depending on the sample and analyte to be measured. Thermometric titration monitors the endothermic or exothermic reaction of a sample with the titrant using a very sensitive thermistor.

The benefit of TET over potentiometric titration is clearly the maintenance-free sensor which does not require any conditioning nor electrolyte refilling. More information about thermometric titration can be found in our previous blog posts below.


Hopefully this article has provided you with information about the main problems encountered during nonaqueous titrations. First, make sure that all electrostatic influences are eliminated. This will save a significant amount of troubleshooting. Then prepare and treat your electrode correctly before, during, and after titration. Make sure to condition the electrode right before your first measurement!

Of special importance here is the solvent you plan to use. If it is a polar solvent, the electrode should be conditioned in deionized water. If nonpolar solvents like acetic anhydride are used, the electrode should be dehydrated first. Between measurements, the electrode should be cleaned with a suitable solvent and the diaphragm should be opened on occasion.

Last but not least, take care of your buret. Maintain it regularly and replace it whenever necessary. With this advice, performing nonaqueous titrations should be a breeze!

For more information

about nonaqueous titrations, download our monograph:

Nonaqueous titration of acids and bases with potentiometric endpoint indication

Post written by Iris Kalkman (Product Specialist Titration at Metrohm International Headquarters, Herisau, Switzerland) and Dr. Sabrina Gschwind (Head of R&D at Metroglas, Affoltern, Switzerland).

The importance of titrations in pharmaceutical analysis

The importance of titrations in pharmaceutical analysis

If you are in the pharmaceutical industry and wonder if a conversion from a manual titration to an automated titration is suitable for your work, this blog post should give you all the answers you need.

I will cover the following topics in this article (click to go directly to the topic):

Applicability of modern titration methods in pharmaceutical analysis

Perhaps you have already heard or read about automated titration and its benefits in comparison to manual titration, but are now wondering whether those guidelines are also applicable to pharmaceutical analysis.

Getting straight to the point: Yes, it is true that many USP monographs as well as USP General Chapter <541> Titrimetry still refer to the manual visual endpoint titration. But there’s good news! USP-NF General Notices and Requirements Section 6.30 states:

As long as the alternative method is fully validated and you can prove that both methods are equivalent, you are allowed to use alternative methods.

Since titration still plays an important role in pharmaceutical analytical procedures and processes, Metrohm offers a variety of applications for innumerous API monographs of the United States Pharmacopeia as well as pharmacopeia-compliant analytical instruments.

Automated titration procedure

Have you wondered about how to perform the procedure of an automated titration—how does it differ from a manual titration? Working with a pharmacopeia compliant analytical instrument from Metrohm is not so different:


  1. Titrant is added with an automated piston buret that safely controls the delivery of titrant to a precise level.
  2. The sample is homogenized with a stirrer.
  3. The electrode detects the titration endpoint, removing subjectivity of color changes.
  4. Results are automatically calculated and displayed allowing no room for human error.
Figure 1. Anatomy of an automatic titrator.

As shown in Figure 1, an automated titration procedure mainly consists of four steps. These steps are repeated until the end of the titration (Figure 2).

In addition, all Metrohm devices that run with proprietary tiamo® or OMNIS® software are 21 CFR Part 11 compliant meeting all ALCOA+ requirements. Thanks to improvements in productivity, accuracy, and precision, the human influence on analysis is reduced to a minimum.

Figure 2. The titration cycle illustrating the different steps in an automated titration procedure.

If you are wondering how to transfer a manual titration to automated titration, then check out our earlier blog posts on this topic. Also, download our free white paper comparing manual and automated titration.

Choice of electrodes for pharmaceutical titrations

For autotitration, either an electrode or a photometric sensor is used to detect the point of a sample analyte neutralization. Metrohm offers a wide range of different electrodes for titrations that are extremely suitable for various pharmaceutical applications. The electrode choice depends on the type of reaction, the sample, and the titrant used.

Download our free brochure to learn more.

If you want to know more about how endpoints are recognized using electrodes or photometric sensors, read our previous blog post to find out how the endpoint is determined during an autotitration.

Maybe you are not quite sure which is the best electrode for your application. Therefore, Table 1 shows an interactive electrode guide for different pharmaceutical titrations.

Table 1. Electrode guide for pharmaceutical titrations.
Type of titration Electrode Close-up view Pharma Application / API

Aqueous acid/base titrations

e.g. titrant is NaOH or HCl

phenolphthalein indicator

Combined pH electrode with reference electrolyte c(KCl) = 3 mol/L

e.g. Ecotrode Plus, Unitrode

Water-soluble acidic and basic active pharmaceutical ingredients (API) and excipients

API: Benzbromaron, Potassium carbonate, Potassium bicarbonate

Non-aqueous acid/base titrations

e.g. solvent is organic or glacial acetic acid

crystal violet indicator

Combined pH electrode with alcoholic reference electrolyte LiCl in EtOH

e.g. Solvotrode easyClean

Water-insoluble weak acids and bases

Assay of API

Acid value (free fatty acids)

API: Caffeine, Ketoconazole

Redox titrations

e.g. titrant is sodium thiosulfate

starch indicator

Pt metal electrode

e.g. combined Pt ring electrode, Pt Titrode


Antibiotic assays

Peroxide value in fats and oils

API: Captropril, Paracetamol, Sulfonamide

Precipitation titrations

e.g. titrant is silver nitrate

ferric ammonium sulfate indicator

Ag metal electrode

e.g. combined Ag ring electrode, Ag Titrode

Chloride content in pharmaceutical products

Iodide in oral solutions

API: Dimenhydrinate

Complexometric titrations

e.g. titrant is EDTA

hydroxy naphthol blue indicator

Ion-selective electrode

e.g. combined calcium-selective electrode with polymer membrane

Calcium content in pharmaceutical products

API: Calcium succinate

Photometric titration

e.g. titrant is EDTA

Eriochrome black T indicator

Photometric sensor

e.g. Optrode

Assay of various metal salts in APIs

API: Chondroitin sulfate, Bismuth nitrate, Zinc sulfate

To help you select the best electrode for your titrations, we have prepared a poster for you to easily find the perfect electrode for USP monographs. Additionally, you will find information about proper sensor maintenance and storage.

If you prefer, the Metrohm Electrode Finder is even easier to use. Select the reaction type and application area of your titration and we will present you with the best solution.

As documentation and traceability are critical for the pharmaceutical industry, Metrohm has developed fully digital electrodes, called «dTrodes». These dTrodes automatically store important sensor data, such as article number and serial number, calibration data and history, working life, and the calibration validity period on an integrated memory chip.


Metrohm is your qualified partner for all chemical and pharmaceutical analysis concerns and for analytical method validation.

In addition to full compliance with official directives, Metrohm instruments and applications comply with many of the quality control and product approval test methods cited in pharmacopoeias. Discover the solutions Metrohm offers the pharmaceutical industry (and you in particular!) for ensuring the quality and safety of your products.

Learn even more about the practical aspects of modern titration in our monograph and visit our Webinar Center for informative videos.

Need a reason to switch

from manual to automated titration?

How about FIVE?

Post written by Doris Hoffmann, Product Manager Titration at Metrohm International Headquarters, Herisau, Switzerland.

Introduction to Analytical Instrument Qualification – Part 2

Introduction to Analytical Instrument Qualification – Part 2

Welcome back to our blog, and happy 2021! We hope that you and your families had a safe and restful holiday season. To start the year, we will conclude our introduction to Analytical Instrument Qualification. 

Metrohm’s approach to Analytical Instrument Qualification (AIQ)

Metrohm’s answer to Analytical Instrument Qualification is bundled in our Metrohm Compliance Services. The most thorough level of documentation offered for AIQ is the IQ/OQ.

Metrohm IQ/OQ documentation provides you with the required documentation in strict accordance to the major regulations from the USP, FDA, GAMP, and PIC/S, allowing you to document the suitability of your Metrohm instruments for your lab’s specific intended use.

With our test procedures (described later in more detail), we can prove that the hardware and software components function correctly, both individually and as part of the system as a whole. With Metrohm’s IQ/OQ, you are supported in the best possible way to integrate our systems into your current processes.

Our high quality documentation will have you «audit ready» all the time.

The flexibility of a modular document structure

Depending on the environment you work in and your specific demands, Metrohm can offer a tailored qualification approach thanks to documentation modularity. If you need a lower level of qualification, only the required modules can be executed. Our documentation consists of different modules, each of which documents the identity of the Metrohm representative along with the qualification reviewer, combined with the details of each instrument, software, and document involved in the qualification.  Thanks to this, each module is independent, which guarantees both full traceability and reliability for your system setup.

Cost-effective qualification from Metrohm

Metrohm supports you by implementing a cost-effective qualification process, depending upon your requirements and the modules needed. This means that a qualification is not about performing unnecessary actions, qualification is about completing the required work.

The risk assessment analysis defines the level of qualification needed and based on it, we focus on testing only what needs to be tested. In case you relocate your device to another lab, which qualification steps (DQ, IQ, OQ, PQ) are really needed in order to fulfill your requirements? Contact your local Metrohm expert for advice on this matter.

A complete Metrohm IQ/OQ qualification includes…

Metrohm IQ/OQ documentation is based on the following documentation tree, beginning with the first module, the Master Document (MD), followed by the Installation Qualification (IQ) and eventually the Operational Qualification (OQ). The OQ is then divided again into individual component tests (Hardware and Software) and a holistic test to validate your complete system.

Master Document (MD)

Each qualification starts with the Master Document (MD) – the central organizing document for the AIQ procedures. It not only describes the process of installing and qualifying the instruments, but also the competence and education level of the qualifying engineer. The MD identifies all other components to be added to the qualification, resulting in a flexible framework on which to build up a set of documentation.

Installation Qualification (IQ)

Once the content of the documentation is defined in the MD, the Installation Qualification (IQ) follows. This set of documentation is designed to ensure that the instrument, software, and any accessories have been all delivered and installed correctly. The IQ protocol additionally specifies that the workplace is suitable for the analytical system as stipulated by Metrohm.

Operational Qualification (OQ)

After a correct installation comes the main part of the qualification: the Operational Qualification (OQ). In the first part of the OQ, the functionality of the single hardware components is tested and evaluated according to a set of procedures. This is to ensure that the instrument is working perfectly as designed, and is safe to use. Rest assured that you can rely on the expertise of our Metrohm certified engineers to conduct these comprehensive tests on your instruments using the necessary calibrated and certified tools.

The second part of the OQ consists of a set of Software Tests to prove that the installed Metrohm software functions correctly and reliably on the computer it was installed on. The importance of maintaining software in a validated state is also related to the data integrity of your laboratory. Therefore these software tests can be repeated periodically or after major changes. In particular, these functionality tests cover verifications on user management, database functionalities, backups, audit trail review, security policy, electronic signatures, and so on.

At Metrohm, we constantly work to improve our procedures and use state of the art tools and technologies.  For this reason, we have implemented a completely automated test procedure for validating the software of our new OMNIS platform. This ensures full integrity in the execution and delivers consistent results with a faster and completely error-free test execution. This innovative and automated software validation eliminates manual activities that are labor intensive and time consuming. This therefore expedites testing and removes the inefficiencies that plague the paper-based software validation.

Your benefit is clear: save valuable time and reduce unnecessary laboratory start-up activities during qualification. That’s time you can spend on other work in your lab!

Holistic Test (Performance Verification, PV)

Once each individual component has been separately tested, the performance of the system as a whole is proven by means of a holistic test (OQ-PV).

This includes a series of «wet-chemical» tests, performed using certified reference materials, to prove the system is capable of generating quality data, i.e. results that are accurate, precise, and above all fit for purpose. Based on detailed, predefined instructions (SOPs), a series of standard measurements are performed, statistically evaluated, and compared to the manufacturer’s specifications.

Differences between Performance Verification (PV) and Performance Qualification (PQ)

The Performance Verification (PV) is a set of tests offered by Metrohm in order to verify the fitness for purpose of the instrument. As mentioned in the previous paragraph, the PV includes standardized test procedures to ensure the system operates as designed by the manufacturer in the selected environment.

On the other hand, the Performance Qualification (PQ) is a very customer specific qualification phase (see the «4 Q’s» Qualification Phases found in Part 1). PQ verifies the fitness for purpose of the instrument under actual condition of use, proving its continued suitability. Therefore, PQ tests are defined depending on your specific analysis and acceptance criteria.

Now my questions to you—is your analytical instrument qualified for its intended use? Is your lab in compliance with the latest regulations for equipment qualification and validation? Get expert advice directly from your local Metrohm agency and request your quote for Metrohm qualification services today!

Check out our online material:

Metrohm Quality Service

Post written by Lara Casadio, Jr. Product Manager Service at Metrohm International Headquarters, Herisau, Switzerland.