Select Page
The importance of titrations in pharmaceutical analysis

The importance of titrations in pharmaceutical analysis

If you are in the pharmaceutical industry and wonder if a conversion from a manual titration to an automated titration is suitable for your work, this blog post should give you all the answers you need.

I will cover the following topics in this article (click to go directly to the topic):

Applicability of modern titration methods in pharmaceutical analysis

Perhaps you have already heard or read about automated titration and its benefits in comparison to manual titration, but are now wondering whether those guidelines are also applicable to pharmaceutical analysis.

Getting straight to the point: Yes, it is true that many USP monographs as well as USP General Chapter <541> Titrimetry still refer to the manual visual endpoint titration. But there’s good news! USP-NF General Notices and Requirements Section 6.30 states:

As long as the alternative method is fully validated and you can prove that both methods are equivalent, you are allowed to use alternative methods.

Since titration still plays an important role in pharmaceutical analytical procedures and processes, Metrohm offers a variety of applications for innumerous API monographs of the United States Pharmacopeia as well as pharmacopeia-compliant analytical instruments.

Automated titration procedure

Have you wondered about how to perform the procedure of an automated titration—how does it differ from a manual titration? Working with a pharmacopeia compliant analytical instrument from Metrohm is not so different:


  1. Titrant is added with an automated piston buret that safely controls the delivery of titrant to a precise level.
  2. The sample is homogenized with a stirrer.
  3. The electrode detects the titration endpoint, removing subjectivity of color changes.
  4. Results are automatically calculated and displayed allowing no room for human error.
Figure 1. Anatomy of an automatic titrator.

As shown in Figure 1, an automated titration procedure mainly consists of four steps. These steps are repeated until the end of the titration (Figure 2).

In addition, all Metrohm devices that run with proprietary tiamo® or OMNIS® software are 21 CFR Part 11 compliant meeting all ALCOA+ requirements. Thanks to improvements in productivity, accuracy, and precision, the human influence on analysis is reduced to a minimum.

Figure 2. The titration cycle illustrating the different steps in an automated titration procedure.

If you are wondering how to transfer a manual titration to automated titration, then check out our earlier blog posts on this topic. Also, download our free white paper comparing manual and automated titration.

Choice of electrodes for pharmaceutical titrations

For autotitration, either an electrode or a photometric sensor is used to detect the point of a sample analyte neutralization. Metrohm offers a wide range of different electrodes for titrations that are extremely suitable for various pharmaceutical applications. The electrode choice depends on the type of reaction, the sample, and the titrant used.

Download our free brochure to learn more.

If you want to know more about how endpoints are recognized using electrodes or photometric sensors, read our previous blog post to find out how the endpoint is determined during an autotitration.

Maybe you are not quite sure which is the best electrode for your application. Therefore, Table 1 shows an interactive electrode guide for different pharmaceutical titrations.

Type of titration Electrode Close-up view Pharma Application / API

Aqueous acid/base titrations

e.g. titrant is NaOH or HCl

phenolphthalein indicator

Combined pH electrode with reference electrolyte c(KCl) = 3 mol/L

e.g. Ecotrode Plus, Unitrode

Water-soluble acidic and basic active pharmaceutical ingredients (API) and excipients

API: Benzbromaron, Potassium carbonate, Potassium bicarbonate

Non-aqueous acid/base titrations

e.g. solvent is organic or glacial acetic acid

crystal violet indicator

Combined pH electrode with alcoholic reference electrolyte LiCl in EtOH

e.g. Solvotrode easyClean

Water-insoluble weak acids and bases

Assay of API

Acid value (free fatty acids)

API: Caffeine, Ketoconazole

Redox titrations

e.g. titrant is sodium thiosulfate

starch indicator

Pt metal electrode

e.g. combined Pt ring electrode, Pt Titrode


Antibiotic assays

Peroxide value in fats and oils

API: Captropril, Paracetamol, Sulfonamide

Precipitation titrations

e.g. titrant is silver nitrate

ferric ammonium sulfate indicator

Ag metal electrode

e.g. combined Ag ring electrode, Ag Titrode

Chloride content in pharmaceutical products

Iodide in oral solutions

API: Dimenhydrinate

Complexometric titrations

e.g. titrant is EDTA

hydroxy naphthol blue indicator

Ion-selective electrode

e.g. combined calcium-selective electrode with polymer membrane

Calcium content in pharmaceutical products

API: Calcium succinate

Photometric titration

e.g. titrant is EDTA

Eriochrome black T indicator

Photometric sensor

e.g. Optrode

Assay of various metal salts in APIs

API: Chondroitin sulfate, Bismuth nitrate, Zinc sulfate

Table 1. Electrode guide for pharmaceutical titrations.

To help you select the best electrode for your titrations, we have prepared a poster for you to easily find the perfect electrode for USP monographs. Additionally, you will find information about proper sensor maintenance and storage.

If you prefer, the Metrohm Electrode Finder is even easier to use. Select the reaction type and application area of your titration and we will present you with the best solution.

As documentation and traceability are critical for the pharmaceutical industry, Metrohm has developed fully digital electrodes, called «dTrodes». These dTrodes automatically store important sensor data, such as article number and serial number, calibration data and history, working life, and the calibration validity period on an integrated memory chip.


Metrohm is your qualified partner for all chemical and pharmaceutical analysis concerns and for analytical method validation.

In addition to full compliance with official directives, Metrohm instruments and applications comply with many of the quality control and product approval test methods cited in pharmacopoeias. Discover the solutions Metrohm offers the pharmaceutical industry (and you in particular!) for ensuring the quality and safety of your products.

Learn even more about the practical aspects of modern titration in our monograph and visit our Webinar Center for informative videos.

Need a reason to switch

from manual to automated titration?

How about FIVE?

Post written by Doris Hoffmann, Product Manager Titration at Metrohm International Headquarters, Herisau, Switzerland.

Introduction to Analytical Instrument Qualification – Part 2

Introduction to Analytical Instrument Qualification – Part 2

Welcome back to our blog, and happy 2021! We hope that you and your families had a safe and restful holiday season. To start the year, we will conclude our introduction to Analytical Instrument Qualification. 

Metrohm’s approach to Analytical Instrument Qualification (AIQ)

Metrohm’s answer to Analytical Instrument Qualification is bundled in our Metrohm Compliance Services. The most thorough level of documentation offered for AIQ is the IQ/OQ.

Metrohm IQ/OQ documentation provides you with the required documentation in strict accordance to the major regulations from the USP, FDA, GAMP, and PIC/S, allowing you to document the suitability of your Metrohm instruments for your lab’s specific intended use.

With our test procedures (described later in more detail), we can prove that the hardware and software components function correctly, both individually and as part of the system as a whole. With Metrohm’s IQ/OQ, you are supported in the best possible way to integrate our systems into your current processes.

Our high quality documentation will have you «audit ready» all the time.

The flexibility of a modular document structure

Depending on the environment you work in and your specific demands, Metrohm can offer a tailored qualification approach thanks to documentation modularity. If you need a lower level of qualification, only the required modules can be executed. Our documentation consists of different modules, each of which documents the identity of the Metrohm representative along with the qualification reviewer, combined with the details of each instrument, software, and document involved in the qualification.  Thanks to this, each module is independent, which guarantees both full traceability and reliability for your system setup.

Cost-effective qualification from Metrohm

Metrohm supports you by implementing a cost-effective qualification process, depending upon your requirements and the modules needed. This means that a qualification is not about performing unnecessary actions, qualification is about completing the required work.

The risk assessment analysis defines the level of qualification needed and based on it, we focus on testing only what needs to be tested. In case you relocate your device to another lab, which qualification steps (DQ, IQ, OQ, PQ) are really needed in order to fulfill your requirements? Contact your local Metrohm expert for advice on this matter.

A complete Metrohm IQ/OQ qualification includes…

Metrohm IQ/OQ documentation is based on the following documentation tree, beginning with the first module, the Master Document (MD), followed by the Installation Qualification (IQ) and eventually the Operational Qualification (OQ). The OQ is then divided again into individual component tests (Hardware and Software) and a holistic test to validate your complete system.

Master Document (MD)

Each qualification starts with the Master Document (MD) – the central organizing document for the AIQ procedures. It not only describes the process of installing and qualifying the instruments, but also the competence and education level of the qualifying engineer. The MD identifies all other components to be added to the qualification, resulting in a flexible framework on which to build up a set of documentation.

Installation Qualification (IQ)

Once the content of the documentation is defined in the MD, the Installation Qualification (IQ) follows. This set of documentation is designed to ensure that the instrument, software, and any accessories have been all delivered and installed correctly. The IQ protocol additionally specifies that the workplace is suitable for the analytical system as stipulated by Metrohm.

Operational Qualification (OQ)

After a correct installation comes the main part of the qualification: the Operational Qualification (OQ). In the first part of the OQ, the functionality of the single hardware components is tested and evaluated according to a set of procedures. This is to ensure that the instrument is working perfectly as designed, and is safe to use. Rest assured that you can rely on the expertise of our Metrohm certified engineers to conduct these comprehensive tests on your instruments using the necessary calibrated and certified tools.

The second part of the OQ consists of a set of Software Tests to prove that the installed Metrohm software functions correctly and reliably on the computer it was installed on. The importance of maintaining software in a validated state is also related to the data integrity of your laboratory. Therefore these software tests can be repeated periodically or after major changes. In particular, these functionality tests cover verifications on user management, database functionalities, backups, audit trail review, security policy, electronic signatures, and so on.

At Metrohm, we constantly work to improve our procedures and use state of the art tools and technologies.  For this reason, we have implemented a completely automated test procedure for validating the software of our new OMNIS platform. This ensures full integrity in the execution and delivers consistent results with a faster and completely error-free test execution. This innovative and automated software validation eliminates manual activities that are labor intensive and time consuming. This therefore expedites testing and removes the inefficiencies that plague the paper-based software validation.

Your benefit is clear: save valuable time and reduce unnecessary laboratory start-up activities during qualification. That’s time you can spend on other work in your lab!

Holistic Test (Performance Verification, PV)

Once each individual component has been separately tested, the performance of the system as a whole is proven by means of a holistic test (OQ-PV).

This includes a series of «wet-chemical» tests, performed using certified reference materials, to prove the system is capable of generating quality data, i.e. results that are accurate, precise, and above all fit for purpose. Based on detailed, predefined instructions (SOPs), a series of standard measurements are performed, statistically evaluated, and compared to the manufacturer’s specifications.

Differences between Performance Verification (PV) and Performance Qualification (PQ)

The Performance Verification (PV) is a set of tests offered by Metrohm in order to verify the fitness for purpose of the instrument. As mentioned in the previous paragraph, the PV includes standardized test procedures to ensure the system operates as designed by the manufacturer in the selected environment.

On the other hand, the Performance Qualification (PQ) is a very customer specific qualification phase (see the «4 Q’s» Qualification Phases found in Part 1). PQ verifies the fitness for purpose of the instrument under actual condition of use, proving its continued suitability. Therefore, PQ tests are defined depending on your specific analysis and acceptance criteria.

Now my questions to you—is your analytical instrument qualified for its intended use? Is your lab in compliance with the latest regulations for equipment qualification and validation? Get expert advice directly from your local Metrohm agency and request your quote for Metrohm qualification services today!

Check out our online material:

Metrohm Quality Service

Post written by Lara Casadio, Jr. Product Manager Service at Metrohm International Headquarters, Herisau, Switzerland.

«Analyze This»: 2020 in review

«Analyze This»: 2020 in review

I wanted to end 2020 by thanking all of you for making «Analyze This» – the Metrohm blog for chemists such a success! For our 60th blog post, I’d like to look back and focus on the wealth of interesting topics we have published this year. There is truly something for everyone: it doesn’t matter whether your lab focuses on titration or spectroscopic techniques, or analyzes water samples or illicit substances – we’ve got you covered! If you’re looking to answer your most burning chemical analysis questions, we have FAQs and other series full of advice from the experts. Or if you’re just in the mood to learn something new in a few minutes, there are several posts about the chemical world to discover.

We love to hear back from you as well. Leaving comments on your favorite blog posts or contacting us through social media are great ways to voice your opinion—we at Metrohm are here for you!

Finally, I wish you and your families a safe, restful holiday season. «Analyze This» will return on January 11, 2021, so subscribe if you haven’t already done so, and bookmark this page for an overview of all of our articles grouped by topic!

Stay healthy, and stay curious.

Best wishes,

Dr. Alyson Lanciki, Scientific Editor, Metrohm AG

Quickly jump directly to any section by clicking a topic:

Customer Stories

We are curious by nature, and enjoy hearing about the variety of projects where our products are being used! For some examples of interesting situations where Metrohm analytical equipment is utilized, read on.

From underwater archaeological research to orbiting Earth on the International Space Station, Metrohm is there! We assist on all types of projects, like brewing top quality beers and even growing antibiotic-free shrimp – right here in Switzerland.

Interested in being featured? Contact your local Metrohm dealer for details!


Metrohm is the global market leader in analytical instruments for titration. Who else is better then to advise you in this area? Our experts are eager to share their knowledge with you, and show this with the abundance of topics they have contributed this year to our blog.

For more in-depth information about obtaining the most accurate pH measurements, take a look at our FAQ about pH calibration or read about avoiding the most common mistakes in pH measurement. You may pick up a few tips!

Choose the best electrode for your needs and keep it in top condition with our best practices, and then learn how to standardize titrant properly. Better understand what to consider during back-titration, check out thermometric titration and its advantages and applications, or read about the most common challenges and how to overcome them when carrying out complexometric titrations

If you are interested in improving your conductivity measurements, measuring dissolved oxygen, or the determination of oxidation in edible fats and oils, check out these blog posts and download our free Application Notes and White Papers!

Finally, this article about comprehensive water analysis with a combination of titration and ion chromatography explains the many benefits for laboratories with large sample loads. The history behind the TitrIC analysis system used for these studies can be found in a separate blog post.

Karl Fischer Titration

Metrohm and Karl Fischer titration: a long history of success. Looking back on more than half a century of experience in KFT, Metrohm has shaped what coulometric and volumetric water analysis are today.

Aside from the other titration blog posts, our experts have also written a 2-part series including 20 of the most frequently asked questions for KFT arranged into three categories: instrument preparation and handling, titration troubleshooting, and the oven technique. Our article about how to properly standardize Karl Fischer titrant will take you step by step through the process to obtain correct results.

For more specific questions, read about the oven method for sample preparation, or which is the best technique to choose when measuring moisture in certain situations: Karl Fischer titration, near-infrared spectroscopy, or both?

Ion Chromatography (IC)

Ion chromatography has been a part of the Metrohm portfolio since the late 1980s. From routine IC analysis to research and development, and from stand-alone analyzers to fully automated systems, Metrohm has provided IC solutions for all situations. If you’re curious about the backstory of R&D, check out the ongoing series about the history of IC at Metrohm.

Metrohm IC user sitting at a laboratory bench.

Common questions for users are answered in blog posts about IC column tips and tricks and Metrohm inline ultrafiltration. Clear calculations showing how to increase productivity and profitability in environmental analysis with IC perfectly complement our article about comprehensive water analysis using IC and titration together for faster sample throughput.

On the topic of foods and beverages, you can find out how to determine total sulfite faster and easier than ever, measure herbicides in drinking water, or even learn how Metrohm IC is used in Switzerland to grow shrimp!

Near-Infrared Spectroscopy (NIRS)

Metrohm NIRS analyzers for the lab and for process analysis enable you to perform routine analysis quickly and with confidence – without requiring sample preparation or additional reagents and yielding results in less than a minute. Combining visible (Vis) and near-infrared (NIR) spectroscopy, these analyzers are capable of performing qualitative analysis of various materials and quantitative analysis of a number of physical and chemical parameters in one run.

Our experts have written all about the benefits of NIR spectroscopy in a 4-part series, which includes an explanation of the advantages of NIRS over conventional wet chemical analysis methods, differences between NIR and IR spectroscopy, how to implement NIRS in your laboratory workflow, and examples of how pre-calibrations make implementation even quicker.

A comparison between NIRS and the Karl Fischer titration method for moisture analysis is made in a dedicated article.

A 2-part FAQ about NIRS has also been written in a collaboration between our laboratory and process analysis colleagues, covering all kinds of questions related to both worlds.

Raman Spectroscopy

This latest addition to the Metrohm family expands the Metrohm portfolio to include novel, portable instruments for materials identification and verification. We offer both Metrohm Raman as well as B&W Tek products to cover a variety of needs and requirements.

Here you can find out some of the history of Raman spectroscopy including the origin story behind Mira, the handheld Raman instrument from Metrohm Raman. For a real-world situation involving methamphetamine identification by law enforcement and first responders, read about Mira DS in action – detecting drugs safely in the field.

Mira - handheld Raman keeping you safe in hazardous situations.

Are you looking for an easier way to detect food fraud? Our article about Misa describes its detection capabilities and provides several free Application Notes for download.

Process Analytics

We cater to both: the laboratory and the production floor. The techniques and methods for laboratory analysis are also available for automated in-process analysis with the Metrohm Process Analytics brand of industrial process analyzers.

Learn about how Metrohm became pioneers in the process world—developing the world’s first online wet chemistry process analyzer, and find out how Metrohm’s modular IC expertise has been used to push the limits in the industrial process optimization.

Additionally, a 2-part FAQ has been written about near-infrared spectroscopy by both laboratory and process analysis experts, which is helpful when starting out or even if you’re an advanced user.

Finally, we offer a 3-part series about the advantages of process analytical technology (PAT) covering the topics of process automation advantages, digital networking of production plants, and error and risk minimization in process analysis.

Voltammetry (VA)

Voltammetry is an electrochemical method for the determination of trace and ultratrace concentrations of heavy metals and other electrochemically active substances. Both benchtop and portable options are available with a variety of electrodes to choose from, allowing analysis in any situation.

A 5-part series about solid-state electrodes covers a range of new sensors suitable for the determination of «heavy metals» using voltammetric methods. This series offers information and example applications for the Bi drop electrode, scTrace Gold electrode (as well as a modified version), screen-printed electrodes, and the glassy carbon rotating disc electrode.

Come underwater with Metrohm and Hublot in our blog post as they try to find the missing pieces of the ancient Antikythera Mechanism in Greece with voltammetry.

If you’d like to learn about the combination of voltammetry with ion chromatography and the expanded application capabilities, take a look at our article about combined analysis techniques.

Electrochemistry (EC)

Electrochemistry plays an important role in groundbreaking technologies such as battery research, fuel cells, and photovoltaics. Metrohm’s electrochemistry portfolio covers everything from potentiostats/galvanostats to accessories and software.

Our two subsidiaries specializing in electrochemistry, Metrohm Autolab (Utrecht, Netherlands) and Metrohm DropSens (Asturias, Spain) develop and produce a comprehensive portfolio of electrochemistry equipment.

This year, the COVID-19 pandemic has been at the top of the news, and with it came the discussion of testing – how reliable or accurate was the data? In our blog post about virus detection with screen-printed electrodes, we explain the differences between different testing methods and their drawbacks, the many benefits of electrochemical testing methods, and provide a free informative White Paper for interested laboratories involved in this research.

Our electrochemistry instruments have also gone to the International Space Station as part of a research project to more efficiently recycle water on board spacecraft for long-term missions.

The History of…

Stories inspire people, illuminating the origins of theories, concepts, and technologies that we may have become to take for granted. Metrohm aims to inspire chemists—young and old—to be the best and never stop learning. Here, you can find our blog posts that tell the stories behind the scenes, including the Metrohm founder Bertold Suhner.

Bertold Suhner, founder of Metrohm.

For more history behind the research and development behind Metrohm products, take a look at our series about the history of IC at Metrohm, or read about how Mira became mobile. If you are more interested in process analysis, then check out the story about the world’s first process analyzer, built by Metrohm Process Analytics.

Need something lighter? Then the 4-part history of chemistry series may be just what you’re looking for.

Specialty Topics

Some articles do not fit neatly into the same groups as the rest, but are nonetheless filled with informative content! Here you can find an overview of Metrohm’s free webinars, grouped by measurement technique.

If you work in a regulated industry such as pharmaceutical manufacturing or food and beverage production, don’t miss our introduction to Analytical Instrument Qualification and what it can mean for consumer safety!


Finally, if you are more interested in reading articles related to the industry you work in, here are some compilations of our blog posts in various areas including pharmaceutical, illicit substances, food and beverages, and of course water analysis. More applications and information can be found on our website.

Food and beverages
All of these products can be measured for total sulfite content.

Oxidation stability is an estimate of how quickly a fat or oil will become rancid. It is a standard parameter of quality control in the production of oils and fats in the food industry or for the incoming goods inspection in processing facilities. To learn more about how to determine if your edible oils are rancid, read our blog post.

Determining total sulfite in foods and beverages has never been faster or easier than with our IC method. Read on about how to perform this notoriously frustrating analysis and get more details in our free LC/GC The Column article available for download within.

Measuring the true sodium content in foodstuff directly and inexpensively is possible using thermometric titration, which is discussed in more detail here. To find out the best way to determine moisture content in foods, our experts have written a blog post about the differences between Karl Fischer titration and near-infrared spectroscopy methods.

To determine if foods, beverages, spices, and more are adulterated, you no longer have to wait for the lab. With Misa, it is possible to measure a variety of illicit substances in complex matrices within minutes, even on the go.

All of these products can be measured for total sulfite content.

Making high quality products is a subject we are passionate about. This article discusses improving beer brewing practices and focuses on the tailor-made system built for Feldschlösschen, Switzerland’s largest brewer.

Pharmaceutical / healthcare

Like the food sector, pharmaceutical manufacturing is a very tightly regulated industry. Consumer health is on the line if quality drops.

Ensuring that the analytical instruments used in the production processes are professionally qualified is a must, especially when auditors come knocking. Find out more about this step in our blog post about Analytical Instrument Qualification (AIQ).

Moisture content in the excipients, active ingredients, and in the final product is imperative to measure. This can be accomplished with different analytical methods, which we compare and contrast for you here.

The topic of virus detection has been on the minds of everyone this year. In this blog post, we discuss virus detection based on screen-printed electrodes, which are a more cost-effective and customizable option compared to other conventional techniques.

Water analysis

Water is our business. From trace analysis up to high concentration determinations, Metrohm has you covered with a variety of analytical measurement techniques and methods developed by the experts.

Learn how to increase productivity and profitability in environmental analysis laboratories with IC with a real life example and cost calculations, or read about how one of our customers in Switzerland uses automated Metrohm IC to monitor the water quality in shrimp breeding pools.

If heavy metal analysis is what you are interested in, then you may find our 5-part series about trace analysis with solid-state electrodes very handy.

Unwanted substances may find their way into our water supply through agricultural practices. Find out an easier way to determine herbicides in drinking water here!

Water is arguably one of the most important ingredients in the brewing process. Determination of major anions and cations along with other parameters such as alkalinity are described in our blog post celebrating International Beer Day.

All of these products can be measured for total sulfite content.
Illicit / harmful substances

When you are unsure if your expensive spices are real or just a colored powder, if your dairy products have been adulterated with melamine, or fruits and vegetables were sprayed with illegal pesticides, it’s time to test for food fraud. Read our blog post about simple, fast determination of illicit substances in foods and beverages for more information.

Detection of drugs, explosives, and other illegal substances can be performed safely by law enforcement officers and first responders without the need for a lab or chemicals with Mira DS. Here you can read about a real life training to identify a methamphetamine laboratory.

Drinking water regulations are put in place by authorities out of concern for our health. Herbicides are important to measure in our drinking water as they have been found to be carcinogenic in many instances.

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.

Introduction to Analytical Instrument Qualification – Part 2

Introduction to Analytical Instrument Qualification – Part 1

When talking about the subject of Analytical Instrument Qualification (AIQ), my first thought is of regulated industries, like pharmaceuticals and food. 

You may be wondering—Why do we need to qualify analytical instruments in this environment? Why does my titrando or my OMNIS system need such a service?

Consumer safety here is of paramount importance. Medicines that may represent a health hazard for patients or do not provide the intended therapeutic effect are undesirable and costly, therefore steps must be taken to safeguard the manufacturing process and prevent fatal implications. By qualifying the used analytical instruments, we can ensure that active ingredients and finished pharmaceutical products are manufactured in a safe environment.

In addition, procedures that prove instrument accuracy and repeatability are a must. Metrohm qualification procedures provide this documentation, fully traceable evidence which is also required for inspections and audits by regulatory authorities.

When auditors come knocking

In case an auditor observes any violations of the United States Food and Drug Administration (FDA) guidelines for example, this will be communicated in an inspectoral observation or a Warning Letter. If we look to pharmaceutical Warning Letters in the past, we can see that the FDA is mainly concerned with issues related to qualification and data integrity.

Some typical findings are e.g. the usage of an unqualified system, or the use of an instrument outside of the calibration range for which it was initially qualified. This proves the point that qualification of analytical instruments in regulated environments cannot be ignored.

Metrohm Compliance Services can help to prove the full data traceability of your qualification activities, simplifying your audit preparation and at the same time maintaining a constant state of inspection readiness for your laboratory.

Instruments in regulated environments need to be qualified periodically according to the main regulatory bodies. The United States Pharmacopeia (USP) is the leading pharmacopeia that has a general chapter dedicated to Analytical Instrument Qualification (AIQ), USP <1058>. Therefore, it has global significance, making laboratories subject to regulatory requirements either directly or indirectly. This is why Metrohm Compliance Services are based on this important chapter.

What is Analytical Instrument Qualification (AIQ) exactly?

As per USP <1058>, it is «the collection of documented evidence that an instrument performs suitably for its intended purpose.» This indicates that AIQ is the foundation for generating quality data with the needed data integrity. By using qualified instruments, you gain confidence in the validity of generated data and that your instrument meets specifications of regulatory standards.

AIQ is not a single activity, but a continuous process over the lifetime of the instrument. AIQ already starts before the instrument purchase with the formal writing of User Requirement Specifications (URS), where the lab’s requirements for a specific instrument are documented. And yes, for e.g. a fully equipped Metrohm Dual IC system as well as for a single Metrohm pH meter, there is the same need to document the laboratory requirements and its intended use.

After clarification of the intended use and the evaluation of the right technology, a Risk Assessment (RA) needs to be carried out to determine the required qualification strategy to prove the «fitness for purpose» of the purchased analytical instrument.

The extent of the next qualification stages depends on the outcome of the Risk Assessment. The following activities are grouped into four phases: Design Qualification (DQ), Installation Qualification (IQ), Operational Qualification (OQ), and Performance Qualification (PQ), the so-called «4 Q’s».

Whereas the DQ is the documented verification that the instrument specifications meet the laboratory requirements, the IQ provides the proof that the equipment has been installed properly. In the OQ phase, it’s demonstrated that the system operates correctly in the selected environment as per manufacturer specifications, while the PQ confirms that the instrument consistently performs according to your defined specifications.

During the lifecycle of the instrument, major repairs might be needed, it might be subject to major updates / upgrades, or it might even be transferred to another lab. In all of these cases, the original URS should be reviewed again and adjusted if necessary. The URS is a living document that can and must be changed and updated when needed. Based on a risk assessment analysis, it will then be defined what the qualification steps are that should be repeated after the needed changes (IQ, OQ, PQ).

Eventually the instrument’s life comes to an end, and we arrive at its retirement. This final step of the AIQ is often considered as the «forgotten child» of validation activities. To put this a bit more in perspective, consider when you make a new electronic purchase, such as a PC. The situation is similar to when a new analytical system is bought. It’s easier to focus on something new—concentrating on getting the training for its proper usage, and making sure it’s working correctly. We begin to ignore or forget that the old system is still there.

Therefore, decommissioning of an instrument is a critical part of the validation process that must also be very well documented. For the old system, a final system qualification might be necessary if required. Afterwards, all data have to be removed and stored in a safe location. It is extremely important to ensure that the data can be read from this location (data migration) for a number of years, depending on your retention procedures.

Support when and where you need it

The fact that users have responsibilities for the instrument qualification (USP <1058>) does not mean that all qualification activities must be conducted alone!

Metrohm supports you over the lifetime of your investment, from advising you during the purchase process to the first installation and qualification. Additionally, our IQ/OQ documentation provides you the required documentation in strict accordance with the current regulations. To ensure your Metrohm device remains in a qualified state, we offer requalification services at scheduled intervals as specified in your requirements, to guarantee the accuracy and precision of your system over its lifetime. 

An advantage of relying on Metrohm as the manufacturer of your analytical instruments is that we have all the necessary experience for performing IQ/OQ procedures. Most importantly, our certified service engineers bring along all calibrated and certified reference instruments that are required for the qualification. To ensure the quality of Metrohm Service is maintained, our service engineers undergo compulsory re-training on a regular basis according to a globally standardized program.

Buying Metrohm equipment is the first step to success, but maintaining it in a qualified state is the key! Just contact your local Metrohm dealer and let us handle the rest.

For more details about which qualification phases can be fully handled by Metrohm and where we can support you, read Part 2!

Check out our online material:

Metrohm Quality Service

Post written by Lara Casadio, Jr. Product Manager Service at Metrohm International Headquarters, Herisau, Switzerland.

Comprehensive water analysis: combining titration, IC, and direct measurement in one setup

Comprehensive water analysis: combining titration, IC, and direct measurement in one setup

If you perform water analyses on a regular basis, then you know that analyzing different parameters for drinking water can be quite time-consuming, expensive, and it requires significant manual labor. In this article, I’d like to show you an example of wider possibilities in automated sample analysis when it comes to combining different analytical techniques, especially for our drinking water.

Water is the source and basis of all life. It is essential for metabolism and is our most important foodstuff.

As a solvent and transporting agent it carries not only the vital minerals and nutrients, but also, increasingly, harmful pollutants, which accumulate in aquatic or terrestrial organisms.

Within the context of quality control and risk assessment, there is a need in the water laboratory for cost-effective and fast instruments and methods that can deal with the ever more complex spectrum of harmful substances, the increasing throughput of samples, and the decreasing detection limits.

Comprehensive analysis of ionic components in liquid samples such as water involves four analytical techniques:

  • Direct measurement
  • Titration
  • Ion chromatography
  • Voltammetry

Each of these techniques has its own particular strengths. However, applying them one after the other on discrete systems in the laboratory is a rather complex task that takes up significant time.

Back in 1998, Metrohm accepted the challenge of combining different analytical techniques in a single fully automated system, and the first TitrIC system was introduced.

What is TitrIC?

The TitrIC system from Metrohm combines direct measurement, titration, and ion chromatography in a fully automated system.

Direct measurements include temperature, conductivity, and pH. The acid capacity (m and p values) is determined titrimetrically. Major anions and cations are quantified by ion chromatography. Calcium and magnesium, which are used to calculate total hardness, can be determined by titration or ion chromatography.

The results are displayed in a common table, and a shared report is given out at the end of the analysis. All methods in TitrIC utilize the same liquid handling units and a common sample changer.

For more detailed information about the newest TitrIC system, which is available in two predefined packages (TitrIC flex I and TitrIC flex II), take a look at our informative brochure:

Efficient: Titrations and ion chromatography are performed simultaneously with the TitrIC flex system.

Figure 1. Flowchart of TitrIC flex II automated analysis and data acquisition.

How does TitrIC work?

Each water sample analysis is performed fully automated at the push of a button—fill up a sample beaker with the sample, place it on the sample rack, and start the measurement. The liquid handling units transfer the required sample volume (per measurement technique) for reproducible results. TitrIC carries out all the work, and analyzes up to 175 samples in a row without any manual intervention required, no matter what time the measurement series has begun. The high degree of automation reduces costs and increases both productivity and the precision of the analysis.

Figure 2. The Metrohm TitrIC flex II system with OMNIS Sample Robot S and Dis-Cover functionality.

To learn more about how to perform comprehensive water analysis with TitrIC flex II, download our free application note AN-S-387:

Would you like to know more about why automation should be preferred over manual titration? Check out our previous blog post on this topic:

Calculations with TitrIC

With the TitrIC system, not only are sample analyses simplified, but the result calculations are performed automatically. This saves time and most importantly, avoids sources of human error due to erroneously noting the measurement data or performing incorrect calculations.

Selection of calculations which can be automatically performed with TitrIC: 

  • Molar concentrations of all cations
  • Molar concentrations of all anions
  • Ionic balance
  • Total water hardness (Ca & Mg)
  • … and more

Ionic balances provide clarity

The calculation of the ion balance helps to determine the accuracy of your water analysis. The calculations are based on the principle of electro-neutrality, which requires that the sum in eq/L or meq/L of the positive ions (cations) must equal the sum of negative ions (anions) in solution.

TitrIC can deliver all necessary data required to calculate the ion balance out of one sample. Both anions and cations are analyzed by IC, and the carbonate concentration (indicative of the acid capacity of water) is determined by titration.

If the value for the difference in the above equation is almost zero, then this indicates that you have accurately determined the major anions and cations in your sample.

Advantages of a combined system like TitrIC

  • Utmost accuracy: all results come from the same sample beaker

  • Completely automated, leaving analysts more time for other tasks

  • One shared sample changer saves benchtop space and costs

  • Save time with parallel titration and IC analysis

  • Flexibility: use titration, direct measurement, or IC either alone or combined with the other techniques

  • Single database for all results and calculation of the ionic balance, which is only possible with such a combined system, and gives further credibility to the sample results

Even more possibility in sample analysis

TitrIC has been developed especially for automated drinking water analysis but can be adapted to suit any number of analytical requirements in food, electroplating, or pharmaceutical industries. Your application determines the parameters that are of interest.

If the combination of direct measurement, titration, and IC does not suit your needs, perhaps a combination of voltammetry and ion chromatography in a single, fully automatic system might be more fitting. Luckily, there is the VoltIC Professional from Metrohm which fulfills these requirements.

Check out our website to learn more about this system:

As you see, the possibility of combining different analysis techniques is almost endless. Metrohm, as a leading manufacturer of instruments for chemical analysis, is aware of your analytical challenges. For this reason, we offer not only the most advanced instruments, but complete solutions for very specific analytical issues. Get the best out of your daily work in the laboratory!

Read our article

in LC/GC’s The Column November 2020 edition:

Environmental Analysis with Integrated Ion Chromatography, Titration, and Direct Measurement

Post written by Jennifer Lüber, Jr. Product Specialist Titration/TitrIC at Metrohm International Headquarters, Herisau, Switzerland.