Select Page
NIR spectroscopy in the petrochemical and refinery industry: The ASTM compliant tool for QC and product screening – Part 1

NIR spectroscopy in the petrochemical and refinery industry: The ASTM compliant tool for QC and product screening – Part 1

Introduction to the petrochemical and refining industry

Oil and gas for fuel are produced in nearly every corner of the globe, from small private wells generating around 100 barrels a day, to the large bore wells producing upwards of 40 times that volume. Despite this great variation in size, many parts of the refining process are quite similar.

Chemicals derived from petroleum or natural gas, so-called «petrochemicals», are an essential part of the contemporary chemical industry. The field of petrochemistry became increasingly popular around the early 1940’s during the second world war. At that time there was a growing demand for synthetic products which was a great driving force for the development of petrochemical products.

Oil refining aims to provide a defined range of products according to agreed specifications. Simple refineries use a distillation column (Figure 1) to separate crude oil into different fractions based on their chemical properties, and the relative quantities are directly dependent on the crude oil used. Therefore, it is necessary to obtain a range of crudes that can be blended into a suitable feedstock to produce the required quantity and quality of end products.

The basic products from fractional distillation are shown in Figure 1.

Wallace Carothers, inventor of polyamide.
Figure 1. Illustration of a fractionating distillation column used for the purposes of refining crude oil into several desirable end products.

Near-infrared (NIR) spectroscopy is a technique that is particularly suited for making quality control of these end products more efficient and cost-effective for manufacturers. Furthermore, NIRS is recognized and accepted by ASTM as an alternative method to other techniques. Dedicated ASTM methods for method development, method validation, and results validation are presented later in this article.

Read on for a short overview on NIR spectroscopy followed by application examples for the petrochemical and refinery industry to learn how petrochemical producers and refineries alike can benefit from NIRS.

NIR technology: a brief overview

The interaction between light and matter is a well-known process. Light used in spectroscopic methods is typically not described by the applied energy, but in many cases by the wavelength or in wavenumbers.

A NIR spectrometer such as the Metrohm NIRS DS2500 Petro Analyzer measures this light-matter interaction to generate spectra such as those displayed in Figure 2. NIRS is especially sensitive to the presence of certain functional groups like -CH, -NH, -OH, and -SH. Therefore, NIR spectroscopy is an ideal method to quantify different QC parameters like water content (moisture), cetane index, RON/MON (research and motor octane numbers), flash point, and cold filter plugging point (CFPP), just to name a few. Furthermore, the interaction is also dependent upon the matrix of the sample itself, which also allows the detection of physical and rheological parameters like density and viscosity.

Figure 2. Diesel spectra resulting from the interaction of NIR light with the respective samples.

All of this information is contained in a single spectrum, making this method suitable for quick multiparameter analysis. Liquid samples such as oils are secured within an appropriate container or vial (Figure 3), then placed as-is on the smart vial holder.

Figure 3. Liquid sample placement for NIR spectra measurement on the smart vial holder from Metrohm.

The measuring mode is referred to as «transmission», generally an appropriate procedure for analyzing liquids. For transmission measurement (Figure 4), the NIR light will travel through the sample while being absorbed. Unabsorbed NIR light passes to the detector. In less than 60 seconds the measurement is completed and the results are displayed.

Figure 4. A. Measurements of liquids are typically done with disposable vials. B. The NIRS measurement mode is known as transmission, where light travels through the sample while being absorbed (from left to right in the illustration).

The procedure to obtain NIR spectra already highlights two major advantages of NIR spectroscopy compared to other analytical techniques: simplicity regarding sample measurement, and speed:

  • Fast technique with results in less than a minute.
  • No sample preparation required – measure samples as-is.
  • Low cost per sample – no chemicals or solvents needed.
  • Environmentally friendly technique – no waste generated.
  • Non-destructive – precious samples can be reused after analysis.
  • Easy to operate – inexperienced users are immediately successful.

Read our previous blog posts to learn more about NIRS as a secondary technique.

Where can NIRS be used in the refining process?

The refining process can be divided into three different segments:

  • Upstream
  • Midstream
  • Downstream

Upstream describes the process of converting crude oil into intermediate products. Refineries are usually very large complexes with several hazardous explosive areas. Therefore, operators are reluctant to transport samples from the different processes to the laboratory. Even the process of obtaining samples for analysis at external QC laboratories is laborious and can require significant paperwork and certified transport services. For obvious reasons, in most cases inline measurements are preferred. These types of measurements are typically done by process NIRS analyzers.

Read more about the difference between atline, online, and inline analyses in our blog post.

Curious about NIRS analyzers for inline process measurements, even in explosive areas? Visit our website to learn more.

Midstream, shown here in Figure 5, offers many more opportunities for the Metrohm DS2500 Petro Analyzer to assist in quality control.

Figure 5. Flowchart of how crude oil becomes gasoline at the local gas station, and where NIRS can perform quality checks during the process.

Fuel is constantly checked for quality when it is received as well as supplied, and in addition to this many terminals also test fuel quality prior to offloading the trucks. The total time for receiving and offloading fuel into a storage tank is approximately 30 minutes, so a fast analysis technique like NIRS is very advantageous.

Downstream at fuel depots and gas stations, the regulatory agencies require measurement of many of the same quality parameters as in the production of gasoline and diesel, and this can also be accomplished with NIRS. There is a significant advantage if the analysis can be done on-site using fresh samples and without the hassle of needing to transport them to testing laboratories.

Mobile NIRS fuel testing using the Metrohm NIRS XDS RapidLiquid Analyzer (XDS-RLA) has been successfully implemented in a number of countries where they enjoy the benefits of having instantaneous on-site results for gasoline and diesel testing. The calibrations developed on the XDS-RLA are easily transferrable to the DS2500 Petro Analyzer. The DS2500 Petro Analyzer does not require trained analysts, and the calibrations do not require constant maintenance, making this an ideal way to monitor different fuels at service stations and more.

Figure 6. Examples of mobile fuel testing with the Metrohm DS2500 Petro Analyzer.

Learn more about the possibilities of petrochemical analysis with Metrohm DS2500 Analyzers in our free brochure.

NIRS as an ASTM compliant tool for QC

Method development

ASTM E1655: Standard Practices for Infrared Multivariate Quantitative Analysis

«These practices cover a guide for the multivariate calibration of infrared spectrometers used in determining the physical or chemical characteristics of materials. These practices are applicable to analyses conducted in the near infrared (NIR) spectral region (roughly 780 to 2500 nm) through the mid infrared (MIR) spectral region (roughly 4000 to 400 cm-1).»

Multivariate analysis of petroleum products

ASTM D8321: Standard Practice for Development and Validation of Multivariate Analyses for Use in Predicting Properties of Petroleum Products, Liquid Fuels, and Lubricants based on Spectroscopic Measurements

«This practice covers a guide for the multivariate calibration of infrared (IR) spectrophotometers and Raman spectrometers used in determining the physical, chemical, and performance properties of petroleum products, liquid fuels including biofuels, and lubricants. This practice is applicable to analyses conducted in the near infrared (NIR) spectral region (roughly 780 nm to 2500 nm) through the mid infrared (MIR) spectral region (roughly 4000 cm-1 to 40  cm-1).»

Method validation

ASTM D6122: Standard Practice for Validation of the Performance of Multivariate Online, At-Line, Field and Laboratory Infrared Spectrophotometer, and Raman Spectrometer Based Analyzer Systems

«This practice covers requirements for the validation of measurements made by laboratory, field, or process (online or at-line) infrared (near- or mid-infrared analyzers, or both), and Raman analyzers, used in the calculation of physical, chemical, or quality parameters (that is, properties) of liquid petroleum products and fuels.»

Results validation

ASTM D8340: Standard Practice for Performance-Based Qualification of Spectroscopic Analyzer Systems

«This practice covers requirements for establishing performance-based qualification of vibrational spectroscopic analyzer systems intended to be used to predict the test result of a material that would be produced by a Primary Test Method (PTM) if the same material is tested by the PTM.»

Typical NIRS applications and parameters for the petrochemical and refinery industry

Petrochemicals are subject to standardized test methods to determine their chemical, physical, and tribological properties. Laboratory testing is an indispensable part of both research and development and quality control in the production of petrochemicals. The following test parameters are typically important to measure in the petrochemical and refinery industry (Table 1).

Table 1. Examples for use of NIRS for selected petrochemical QC parameters.
Specific Gravity (API) Gravity meter ASTM D298

AN-NIR-022

AN-NIR-024

AN-NIR-025

AN-NIR-041

AN-NIR-053

AN-NIR-071

AN-NIR-075

AN-NIR-080

AN-NIR-086

AN-PAN-1052

Boiling Point Distillation ASTM D2887
Cold Filter Plugging Point (CFPP) Standardized filter device ASTM D6371
Pour Point Pour Point analyzer ASTM D97
Cloud Point Cloud Point analyzer ASTM D2500
Flash Point Flash Point tester ASTM D93
Viscosity Viscometer ASTM D445
Color Colorimeter ASTM D1500
Density Densimeter ASTM D792
Fatty Acid Methyl Ester (FAME) FTIR ASTM D7806
Reid Vapor Pressure RVP analyzer ASTM D323
PIANO (Paraffins, Isoparaffins, Aromatics, Naphthenes, Olefins) Gas chromatograph ASTM D6729
Octane Number (RON/MON) CFR Engine ASTM D2699

ASTM D2700

Cetane Number CFR Engine ASTM D613
Diene value / MAV index Titration UOP 327-17
Parameter Conventional method ASTM method Relevant NIRS Application Notes

Future installments in this series

This article is a general overview of the use of NIR spectroscopy as the ideal QC tool for the petrochemical / refinery industry. Future installments will be dedicated to the most important applications and will include much more detailed information. Don’t miss our next blogs on the topics of:

 

  • Gasoline / Diesel / Jet fuel
  • Pyrolysis gasoline (Pygas)
  • Lubricants
  • ASTM Norms

For more information

About spectroscopy solutions provided by Metrohm, visit our website!

We offer NIRS for lab, NIRS for process, as well as Raman solutions

Post written by Wim Guns, International Sales Support Spectroscopy at Metrohm International Headquarters, Herisau, Switzerland.

From corn to ethanol: improving the fermentation process with NIRS

From corn to ethanol: improving the fermentation process with NIRS

The production of biofuels from renewable feedstock has grown immensely in the past several years. Bioethanol is one of the most interesting alternatives for fossil fuels, since it can be produced from (renewable) raw materials rich in sugars and starch.

Fermenting corn starch to produce ethanol for fuel is a complex biochemical process that requires monitoring of several parameters to ensure optimal production. Measuring these parameters via traditional laboratory techniques takes about an hour to complete and is a limiting step for increasing plant capacity and efficiency. Near-infrared spectroscopy (NIRS) can replace routine laboratory analysis, decreasing operating costs and increasing plant efficiency and capacity.

Learn more about this fast, non-destructive analysis technique in our different series of blog posts, including the benefits of using NIRS and some frequently asked questions.

Producing high quality ethanol as a fuel additive

Ethanol is an increasingly important component in the global fuel market, with countries looking to secure domestic fuel supplies and reduce their greenhouse gas emissions relative to fossil fuels. The United States and Brazil lead world bioethanol production, accounting for 83% of the supply.

According to the Renewable Fuels Association, approximately 26 billion gallons (nearly 100 billion liters) of ethanol were produced globally in 2020 [1], slightly reduced from a 2019 peak due to the global pandemic crushing demand for gasoline and ethanol as well. Demand for corn to transform into ethanol is still likely to rise as the United States increases adoption of E15 blends (15% ethanol in gasoline) [2]. Ethanol for export is also likely to increase in demand, with countries such as China implementing a E10 fuel standard for motor vehicles.

One of the primary ways to meet increasing product demand while maintaining price competitiveness is to increase plant capacity. However, the standard laboratory analytical workflow for monitoring the different parts of the fermentation process can be a limiting factor for growing a production site or improving its efficiency. Another consideration is the seasonal, and even regional variation of feedstock quality, requiring ethanol producers to closely monitor the fermentation process to ensure the same quality product is achieved.

A report from the National Renewable Energy Laboratory estimated that nearly 40% of the production cost of fuel ethanol from corn comes from labor, supplies, overhead, and variable operating costs [3]. Optimization of these costs, which include routine quality checks of the fermentation broth, regular maintenance of the fermenters and distillation towers, and triaging process upsets in a timely manner, leads to higher profitability of the ethanol production facility.

To maximize bioethanol production and profitability, laboratory limitations must be overcome. Near-infrared (NIR) spectroscopy is a proven economical, rapid, and operator friendly way to overcome common laboratory limitations. First, a bit of background information about the production of bioethanol is needed before jumping into how to optimize the process.

Ethanol process: wet vs. dry milling

There are two main production processes when it comes to creating ethanol from sugars and starches from starting materials such as corn: the wet milling process and the dry milling process (shown in Figure 1). Nearly all ethanol produced for fuel in the U.S. (the largest bioethanol manufacturer in the world) is made using the dry mill process [2].

Figure 1. Schematic representation of the dry mill ethanol process.

Grains are first ground into smaller, more homogenous particles in the dry milling process, which allows the husk or shell to be more easily penetrated. Water and enzymes are then added to create a slurry called a «mash». To facilitate the conversion of starches to sugars, the mash is heated to specific temperatures, then cooled before yeast is added. The yeast performs the work of creating ethanol from the converted sugars via the process of fermentation. However, the percentage of ethanol is still quite low, and therefore the solution must be distilled and dehydrated to obtain the concentration and purity necessary for fuel additives.

Wet milling differs from this process by first soaking the grains before grinding and separating out the various components. The starches are then converted to sugars which are used for the fermentation process, just as with dry milling.

If you want to know more about the fermentation process, read our blog post about optimization of beer brewing.

Lab analysis shortfalls

The lab serves many functions, but one of the key ones is to monitor the progress of the fermentation in each fermentation tank. This typically requires many different technologies, because several parameters must be checked to ensure that a fermentation is on track. Tight monitoring and control over the various sugars present (e.g., glucose, maltose, DP3, etc.) throughout the fermentation process is necessary to understand the breakdown pathway of the starch (glucose generation) present in the mash and optimize ethanol production. Understanding this pathway enables the proper dosage of enzymes and yeast to the mash in the slurry tanks (Figure 1) to accelerate breakdown. Therefore, optimizing the enzyme and yeast blend is crucial for this process. These are the highest consumable costs for ethanol production and significantly affect the rate of production and final yield of ethanol.

Some of the most common analytical instruments and their use cases are listed in Table 1.

Table 1. Typical instruments and parameters that are measured during fermentation of corn to ethanol.
Parameter Measurement technique Analysis time (min) incl. sample prep.
Dissolved solids (°Bx) Refractometer 3–5
pH pH meter 3–5
Solids (non-volatiles) Infrared balance 15–20
Ethanol HPLC 30–45

Sugar profile 
(DP2, DP3, DP4+, glucose, total sugar)

HPLC 30–45
Glycerol HPLC 30–45
Lactic acid Ion chromatography 30–45
Acetic acid Ion chromatography 30–45
Water content Karl Fischer titration 5–10

If all the properties in Table 1 are to be measured, it can easily take an hour using six different pieces of equipment. Factor in conditioning steps and reference scans to ensure proper calibration, and the time for a routine fermentation analysis increases. For a single corn fermentation, this can take upwards of 55 hours—one hour to perform the analysis and six hours between each measurement. However, increasing the number of concurrent fermentations to four or six means that measurements from the different tanks will begin to overlap.

Overlapping instrument demand combined with long analysis times results in a number of different challenges for bioethanol producers. First, if scheduled sampling times overlap, then sampling must either be delayed or samples must age while waiting for analysis. Second, the long analysis time means that data is no longer current, but minimally one hour or older by the time it has been communicated to the plant control center, which decreases the ability to deal with deviations. Neither of these situations is ideal for manufacturers—time is money, after all.

Long laboratory analysis times and infrequent measurements reduce the ability to perform interventions or to adjust other critical parameters (e.g., enzyme addition rate or process temperature). Additionally, such long wait times can impede the decision to end a fermentation early and begin anew if the batch is judged to be beyond recovery.

Faster measurements equal higher profits

The most obvious way to overcome measurement time challenges is to increase the number of tools in the lab and/or to add automation. However, this approach has costs in time; twice the sample preparation increases operating expenses and still fails to give high-speed feedback to the plant operations team.

A better way to overcome measurement time delays is to deploy near-infrared spectroscopy (NIRS), which can make all of the traditional laboratory measurements with one piece of equipment, at the same time, in less than five minutes.

Figure 2 displays the average ethanol concentration from HPLC measurements during several fermentations from one plant. The data shows apparent discontinuities in the first 12 hours, with spikes in glucose and dissolved solids. It is also apparent that the total solids measurement at 48 hours is erroneous. However, because the lab data requires so much time to collect, this spike is ignored instead of retested.

Figure 2. Key parameters measured for corn fermentation to ethanol as reported by the primary analysis methods listed in Table 1.

The NIRS alternative to traditional measurements shown in Figure 3 is of a single fermentation monitored in near real time. This high-speed analysis is possible because sample preparation is trivial for NIRS. Compared to the combination of HPLC and other analytical methods that consume about 60 minutes of operator time per sample, NIRS measures the same parameters and produces a quality result in about a minute. The ability to collect many NIR spectra in the early stages of the fermentation process provides a higher fidelity picture, enabling more timely interventions to maximize ethanol production.

The NIRS alternative to traditional measurements shown in Figure 3 is of a single fermentation monitored in near real time. This high-speed analysis is possible because sample preparation is trivial for NIRS. Compared to the combination of HPLC and other analytical methods that consume about 60 minutes of operator time per sample, NIRS measures the same parameters and produces a quality result in about a minute. The ability to collect many NIR spectra in the early stages of the fermentation process provides a higher fidelity picture, enabling more timely interventions to maximize ethanol production.

Figure 3. Corn fermentation to ethanol as measured by near-infrared spectroscopy.

The higher speed NIRS analysis can be used to increase total plant throughput by growing the number of batches and revenue, as shown in Table 2. With the traditional analysis, the fermentation is allowed to run 62–65 hours, depending on the final laboratory results (Figure 2).

With NIRS analysis, this fermentation is shown to be complete in around 56 hours (Figure 3). Reducing fermentation time by six hours expands the potential number of batches by 13 over the course of a year, representing a potential plant capacity increase of 10%.

Table 2. Comparison of the apparent fermentation time based on primary lab analyses vs NIRS analysis.
Traditional Lab Analysis NIRS Analysis

Total measurement time

12 hours

5 hours

Number of measurements

12

62

Fermentation end point

~62 hours

56 hours

Batch capacity

37,850 L

37,850 L

Batches per year

129

142

Download our free White Paper to learn more.

Near-infrared spectroscopic solutions for ethanol producers

Metrohm offers several NIRS solutions for ethanol producers to make analysis easier and optimize production. The DS2500 Solid Analyzer (Figure 4) is ideal for rapid laboratory analysis of several critical quality parameters in the fermentation process.

Download our free Application Note below to learn more about how Metrohm NIRS laboratory instruments perform quality control measurements for the fermentation process.

Figure 4. The Metrohm DS2500 Solid Analyzer.

Additionally, Metrohm also manufactures NIRS instruments for measurements directly in the process, eliminating the need for removing samples and transporting them to the laboratory. Measurements taken in this way are the most representative of actual process conditions and therefore provide the highest quality data to operators. Learn more here about our different ranges of NIRS process analyzers and accessories.

Data communication between the process analyzer and the control room allows a direct overview of current conditions without delays and offers the possibility of integrating warnings when readings are out of specification or informing operators when the fermentation process is deemed to be complete.

For more information about the usage of NIRS for process analysis in bioethanol production, download our free Application Note.

Summary

Near-infrared analysis decreases measurement time for in-process fermentation samples by approximately 90%, from one hour to five minutes. Faster measurements allow the fermentation process to be followed much more closely, saving operator time to reduce costs and to optimize process conditions and plant operations. Capacity improvements of 10% are possible by being able to stop the fermentations based on rapid determination of the different parameters in the fermenter with NIRS rather than by slower traditional laboratory methods.

NIR methodology can provide benefits across the ethanol plant beyond fermentation monitoring to measure the performance of other plant components such as a centrifuge or dryer, making it a valuable tool to improve operations across the facility.

For more information about utilizing NIRS analysis in the bioethanol process as well as the available precalibrations for various quality parameters, download our free White Paper.

Free White Paper

Improving the corn to ethanol fermentation process with near-infrared spectroscopy (NIRS)

References

[1]  Annual Fuel Ethanol Production U.S. and World Ethanol Production. Renewable Fuels Association: Washington, DC, 2021. https://ethanolrfa.org/statistics/annual-ethanol-production/

[2]  Essential Energy: 2021 Ethanol Industry Outlook. Renewable Fuels Association: Washington, DC, 2021.  https://ethanolrfa.org/wp-content/uploads/2021/02/RFA_Outlook_2021_fin_low.pdf

[3]  Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks. National Renewable Energy Laboratory (NREL): Golden, Colorado, USA, 2000. https://www.nrel.gov/docs/fy01osti/28893.pdf

Post written by Dr. Adam J. Hopkins (PM Spectroscopy at Metrohm USA, Riverview, FL) and Dr. Alyson Lanciki (Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland).

Chemistry of Fireworks

Chemistry of Fireworks

Developed nearly two millennia ago in ancient China, fireworks are increasingly used in cultural celebrations around the world and enjoyed by nearly all ages. As one of the most entertaining forms of chemistry, fireworks appeal to our senses of sight and sound, offering a staggering variety of colors, sizes, shapes, sounds, and so on. We love to watch fireworks because they take our breath away with their magnificence and mystery.

However it is not all fun and games. The business of fireworks (and the field of pyrotechnics in general) is very serious since they should be made as safe as possible to use and also environmentally friendly. Beyond fireworks, other pyrotechnics are found in all kinds of entertainment, like in concerts, movies, and more serious applications for defense and security (e.g., safety measures like flares and signal lights).

What are fireworks made of?

Early fireworks were quite dangerous and were used for protection rather than for celebrations, and hardly resemble the ones we are now familiar with.

It all began back in Ancient China with the invention of gunpowder, which was created from a mixture of charcoal, sulfur, and saltpeter (potassium nitrate). Eventually, as new developments were made to increase the safety and predictability of using these early fireworks, experimentation with colors began and people started using them more for nonviolent purposes. Now there is an entire industry devoted to the development of all kinds of fireworks for consumers and professionals alike.

Learn more about the history of fireworks in the links below:

A firework, or aerial shell as it is also known, basically consists of three main parts aside from the housing: gunpowder and an igniter to make the rocket explode, and inside of the transported capsule on the top there are small garniture pods usually called «stars» (despite being shaped like spheres or cylinders) that include various chemicals for the desired effects. Stars consist of a colorant, a fuel, an oxidizer (oxygen providing substance, e.g., chlorates or nitrates), and a binder to hold the ingredient mixture together in a compact briquette.

The industry has spent a significant amount of time in development to make fireworks explode in shapes like stars and stripes, hearts, or even more complex forms like a cartoon figure, or letters and numbers if timed correctly.

Cross-sectional diagram of a firework capsule filled with star garnitures (72) and igniter (70). [1]

Forming a rainbow of colors

The vibrant colors of fireworks come from the combustion of metal ions which make up to 20% of the components. Metals have been used to color flames even before the invention of modern fireworks (e.g. Bengal fire). Chemically speaking, these metal ions change their electronic state by heating (addition of energy) and then going back to a lower energy state before emitting light of a certain color.

Table 1. List of metals used in pyrotechnics and their colors [2].

Color

Metal

Example compounds

Red

Strontium (intense red)

SrCO3 (strontium carbonate)

Lithium (medium red)

Li2CO3 (lithium carbonate)

LiCl (lithium chloride)

Orange

Calcium

CaCl2 (calcium chloride)

Yellow

Sodium

NaNO3 (sodium nitrate)

Green

Barium

BaCl2 (barium chloride)

B3N3 (boron nitride)

Blue

Copper halides

CuCl2 (copper chloride), at low temperature

Indigo

Cesium

CsNO3 (cesium nitrate)

Violet

Potassium

KNO3 (potassium nitrate)

Rubidium (violet-red)

RbNO3 (rubidium nitrate)

Gold

Charcoal, iron, or carbon black

 

White

Titanium, aluminum, beryllium, or magnesium powders

 

Very prominent here is the yellow color from sodium which is also seen in older street lightbulbs in some countries. Unfortunately, the most vibrant colors formed are also the most toxic for the environment, like strontium (red) and barium (green). These contaminants can be measured in the air, water, and even in the soil—but more on that later.

Find out more information about how fireworks get their colors in the links below:

Safety first

Safety is always a critical issue when discussing fireworks, whether concerning their construction, their use, or their storage. Too many serious accidents have happened over the years involving fireworks.

Learn more about how to handle fireworks in a safe manner here:

Among one of the largest fireworks disasters recorded in Europe was in Enschede (The Netherlands) in 2000. This explosion occurred in the warehouse of the S.E. Fireworks factory, which was located in the center of a residential area as the city grew and continued to build homes around it. An entire neighborhood was razed and the largest of the explosions was felt up to 30 kilometers away.

Because of this incident, sales of larger fireworks in most European countries is only allowed outdoors. Accumulating fireworks at home in preparation for celebrations should be avoided at least in confined environments like basements or apartments. It is better to store them in a ventilated shed or car parking to avoid problems in the case of a fire. Also do not store fireworks for long periods, since most of commercial fireworks are meant to be used within 3–6 months after production because the paper contents can get humid, ionic substances can dissolve and recrystallize, and therefore the likelihood of a failure increases.

In the event of a firework failure: Never have a look immediately! Wait at least 15 minutes at a proper distance and then use a tool to confine it afterwards—never touch it with your bare hands, especially when dealing with exploding fireworks or rockets.

Having said this, fireworks have integrated some safety features over the last several years to work more properly and reliably. For instance, the propellants have been modified from containing black powder to using technology from rockets such as plasticizers for better burning performance during launch, also resulting in less smoke and dust on the ground. A dedicated chain of reactions has to be followed, otherwise it will burn in a harmless way.

Knowledge is power: Prevent accidents with proper analytical testing

In order to help prevent fireworks accidents such as the one in Enschede and countless others, it is crucial to closely monitor different quality parameters including the water content of paper-based fireworks, grain size of the metal particles, and the purity and composition of the colorant, just to mention a few. Adequate quality control provides an entertaining, but safe fireworks experience even in the hands of the general public, when proper protocols are followed.

Metrohm offers several analytical technologies and related applications for this area of research. Analyses can be performed for a wide variety of substances and quality parameters as well as trace materials in the laboratory, on the street, and in the air either via wet chemical methods (e.g., Karl Fischer titration, ion chromatography, voltammetry) or spectroscopic techniques (e.g., near-infrared spectroscopy [NIRS] and Raman spectroscopy).

As mentioned earlier, moisture is an important quality parameter when discussing the safety of explosive materials. Metrohm offers two different techniques for accurate analysis of water content in a variety of matrices which are outlined in the following blog posts.

When it comes to determining the individual concentrations of the main constituents, some wet chemical techniques really stand out. Suppressed anion chromatography is ideal for measuring the ionic components of e.g., firecracker powder, other explosive material, and even in explosion residues for forensic purposes. Coupling an ion chromatograph to a mass spectrometer (IC-MS) opens up even more analysis possibilities. Read more about these studies (and more) by downloading our free Application Notes.

The use of several different metal salts to create the vibrant colors of fireworks can be beautiful but also harmful to our health and that of our environment. Voltammetry (VA) is an electrochemical method suitable for the determination of trace and ultratrace concentrations of heavy metals and other electrochemically active substances. Not only is VA excellent at determining these substances in the laboratory, but also in the field such as for measuring the after effects of a fireworks display or an undesired event. Check out our selection of VA instruments and applications on our website.

Spectroscopic techniques like Raman can help to determine the presence of dangerous explosive materials even when keeping a safe distance by using different instrument attachments. Read our free White Paper about how to use MIRA DS from Metrohm Raman for the purpose of identifying explosives safely.

Environmentally friendly fireworks – a contradiction?

Although fireworks are a very spectacular form of entertainment, there is quite an environmental impact after big cultural events or national holidays. The general atmospheric pollution after a fireworks display has been set off can be seen in an increase of dust and smoke, but also heavy metal content in the air as most contemporary fireworks use these for coloring.

The unburnt material still contains a significant amount of heavy metals. After falling to the ground, this material can dissolve and enter the ground water after it rains. Plastics materials that covered the fireworks for safety reasons are found again as broken shell shrapnel or as microplastics. The combustion of the compounds inside the fireworks leads to increased air pollution in form of aerosols that can be measured and evaluated resulting in heavy metals in the air, fine dust, and even nanoparticles which are extremely harmful for our lungs.

Metrohm Process Analytics has developed the 2060 MARGA (Monitor for AeRosols and Gases in ambient Air) which is used by official agencies and research bodies worldwide to monitor the air quality fully autonomously. This instrument is based on the analytical technique of ion chromatography and can be used as a dedicated continuous air monitoring device that can be left unattended for several weeks at a time, or as a research instrument that can be used for other projects when not monitoring the air quality.

Learn more about the 2060 MARGA and its capabilities in our blog post.

To find out more about the use of Metrohm instruments to monitor the air quality, check out this selection of peer-reviewed articles.

A new «green» firework generation is being developed for both professional and indoor use to try to minimize the heavy metal content and also reduce aerosol forming agents. This makes them more suitable for indoor pyrotechnic shows and for movie production. In regular outdoor shows (e.g. at theme parks), the gunpowder for transport of the capsule has mostly been substituted with an air pressure gun mechanism.

A significant amount of research has gone into substituting heavy metal-based colorants with more environmentally benign substances by increasing the luminosity of lithium derivatives by substituting them for strontium, or by using boron instead of barium or chlorinated compounds.

Finally, the plastic parts commonly used to surround fireworks are planned to be substituted by microcrystalline cellulose mixtures with better plasticizing binders. This leads to a similar stability compared to the current plastic materials, but the cellulose-based containers burn up completely and do not leave harmful materials scattered on the ground.

The future of fireworks shows

All safety measures increase the joy of fireworks not only during, but also after the event—being green and being safe. Foretelling the future, some of these celebrations may now use a cadre of lighted drones in a choreographed dance. This has been happening more steadily as drones fall in price and increase in their handling and programming capabilities. However, fireworks have already been with us for a couple of thousand years, and probably will not disappear any time soon.

Download our free Application Notes

and White Papers related to explosives and propellants

Post written by Dr. Norbert Mayr (Ph.D. in the field of HEDM, pyrotechnics, propellants, and oxidizers), Marketing Specialist & Product Training at Metrohm International Headquarters, Herisau, Switzerland.

Unmatched flexibility in online ion analysis: The 2060 IC Process Analyzer

Unmatched flexibility in online ion analysis: The 2060 IC Process Analyzer

When discussing chemical analysis, the first thing that comes to mind is a chemist working in the laboratory analyzing a sample.

However, in the industrial process world chemical analysis is a much more complicated affair. In the metalworking industry for example, corrosion is a complex problem. The conventional approach (offline analysis systems) is costly, and a more proactive approach is needed for prevention, identification, and manufacturing of high quality metalworking products. Therefore, a more comprehensive sample monitoring and analysis approach is necessary in order to comply with such requirements.

While offline analysis systems depend upon an analyst to collect and process samples, an online analysis system allows for continuous monitoring of multiple parameters in real time without being dependent on an analyst.

Need to refresh your knowledge about the differences between online, inline, and atline analysis? Read our blog post: «We are pioneers: Metrohm Process Analytics».

The implementation of Process Analytical Technologies (PAT) provides a detailed representation in real time of the actual conditions within a process. As a complete solution provider, Metrohm Process Analytics offers the best solutions for online chemical analysis. We seek to optimize process analysis by developing flexible, modular process analyzers that allow multiple analyses of different analytes from a representative sample taken directly at the process site.

Want to learn more about PAT? Check out our article series here: «To automate or not to automate? Advantages of PAT – Part 1».

2060 IC Process Analyzer

With more than 40 years of experience with online process analysis, Metrohm Process Analytics has always been committed to innovation. In 2001, the first modular IC system was developed at Metrohm and it was a success. In the past several years Metrohm Process Analytics focused on implementing more modular flexibility in their products, which resulted in the introduction of the next generation of Process Ion Chromatographs: the 2060 IC Process Analyzer (Figure 1) in 2019. It is built using two 930 Compact IC Flex systems and is in full synergy with the Metrohm process analyzer portfolio (such as the 2060 Process Analyzer).

Figure 1. The 2060 IC Process Analyzer from Metrohm Process Analytics. Pictured here is the touchscreen human interface, the analytical wet part (featuring additional sample preparation modules – top inlay, and the integrated IC – bottom inlay), and a reagent cabinet.

For more background behind the development of IC solutions for the process world, check out our previous blog posts featuring the past of the 2060 IC Process Analyzer:

Using the 2060 platform, modularity is taken to the next step. Configurations of up to four wet part cabinets allow numerous combinations of multiple analysis modules for multiparameter measurements on multiple process streams, making this analyzer unequal to any other on the market.

This modular architecture gives the additional possibility to place separate cabinets in different locations around a production site for a wide angle view of the process. For example, the 2060 IC Process Analyzer can be set up at different locations to prevent corrosion on the water steam cycles in fossil and nuclear power plants.

The 2060 IC Process Analyzer is managed using flexible software enabling straightforward efficient control and programming options. With multiple types of detectors available from Metrohm, high precision analysis of a wide spectrum of analytes is possible in parallel.

The inclusion of an optional (pressureless) ultrapure water system for autonomous operation and reliable trace analysis also benefits users by providing continuous eluent production possibilities for unattended operation (Figure 2).

Finally, the well-known Metrohm Inline Sample Preparation (MISP) techniques are an added bonus for process engineers for repeatable, fully automated preparation of challenging sample matrices.

Figure 2. Continuous eluent production integrated in the 2060 IC Process Analyzer.

Top applications

The collection of samples and process data, including corrosion prevention and control indicators, is critical for efficient plant management in many industries. In order to prevent unscheduled plant shutdowns, accidents, and damage to company assets, process engineers rely on their colleagues in the lab to pinpoint corrosion problems. One of the most effective ways to bridge laboratory analyses to the process environment is to employ real-time analysis monitoring.

Figure 3. Product and process optimization differences between offline, atline, online, and inline analysis.

Optimal online corrosion management

Be it quantifying the harmful corrosive ions (e.g., chlorides, sulfates, or organic acids), measuring corrosion inhibitors (e.g., ammonia, amines, and film-forming amines), or detecting corrosion products, the 2060 IC Process Analyzer is the ideal solution for 24/7 unattended analysis.

In a nuclear power plant, this analyzer can measure a number of analytes including inorganic anions, organic cations, and aliphatic amines to ensure a thorough understanding of corrosive indications without needing multiple instruments.

Figure 4. Water sample from the primary circuit of a pressurized water reactor containing 2 g/L H3BO3 and 3.3 mg/L LiOH spiked with 2 μg/L anions (preconcentration volume: 2000 μL).
Figure 5. Simulated sample from the primary circuit of a pressurized water reactor containing 2 g/L H3BO3 and 3.3 mg/L LiOH spiked with 2 μg/L nickel, zinc, calcium, and magnesium (preconcentration volume: 1000 μL).

Providing quick, reliable results, this system gives valuable insight into the status of corrosion processes within a plant by continuous comparison of results with control values. By correlating the results with specific events, effective corrective action can quickly be undertaken to prevent or minimize plant downtime.

For more information about the determination of anions and cations in the primary circuit of nuclear power plants with the 2060 IC Process Analyzer, download our free Application Notes below.

Online drinking water analysis

In drinking water plants and beverage bottling companies, determination of disinfection byproducts (DBPs) like bromate is crucial due to their carcinogenic properties. The carcinogen bromate (BrO3) has a recommended concentration limit of 10 μg/L of in drinking water set by the World Health Organization.

Nowadays, ion chromatography has been proven to be the best routine analysis method for water analysis, due to its possibility of automated sample preparation, various separation mechanisms, and different types of detectors. Some of the analytical standards that support this include: EPA 300.1EPA 321.8, ASTM D6581, ISO 11206, and ISO 15061.

The 2060 IC Process Analyzer can monitor trace levels of bromate in drinking water online, meaning higher throughput, less time spent performing manual laboratory tests, and better quality drinking water.

Figure 6. Drinking water sample, spiked with 10 μg/L each of chlorite, bromate, chlorate, 40 μg/L each of nitrate, bromide, 100 μg/L phosphate, and 500 μg/L dichloroacetate.
Figure 7. Analysis of a mineral water sample spiked with 0.5 μg/L bromate.

To learn more about the online analysis of bromate in drinking water with the 2060 IC Process Analyzer, download our free Application Note.

Monitoring aerosols and gases in air

Approximately 92% of the world population lives in places where the World Health Organization air quality guideline levels are not met. Air pollution can exacerbate preexisting health conditions and shorten lifespans. It has even been suggested as a link to infertility causes. Hence, understanding the impact of air pollution and air constituents on the environment and our wellbeing is of great significance.

Air pollution is caused not only by gaseous compounds, but also by aerosols and particulate matter (PM). These extremely fine particles enter and damage the lungs; from them, ultrafine particles can spread across the body through the blood cells and cause symptoms of inflammation. While these risks are being debated and researched actively around the world, it is still not known which compounds actually cause harm.

As a result, there is a great need for more specific data on long-term measurements. Fast analytical methods and real-time measurements of concentrations of chemical compounds in ambient air are important and should make it possible to better understand the circumstances and effects.

For optimal air quality monitoring, the gas and aerosol composition of the surrounding air has to be analyzed practically simultaneously as well as continuously, which is possible via inline analysis with ion chromatography.

Metrohm Process Analytics offers the 2060 MARGA (Monitor for AeRosols and Gases in ambient Air) which thanks to its dual-channel ion chromatograph, can automatically analyze the ions from the collected gas and aerosol samples.

If you want to learn more background behind the development of the 2060 MARGA, check out our previous blog post: History of Metrohm IC – Part 5.

For a full list of free downloadable 2060 IC applications, visit our website and check out the Metrohm Application Finder!

Free Application Notes

For the 2060 IC Process Analyzer

Post written by Andrea Ferreira, Technical Writer at Metrohm Applikon, Schiedam, The Netherlands.

History of Metrohm IC – Part 5

History of Metrohm IC – Part 5

In the fifth part in our ongoing series about the history of ion chromatography development at Metrohm, we now focus on automated air quality monitoring with the 2060 MARGA instrument.

Did you miss the other parts in this series? Find them here!

The importance of clean air cannot be understated. Air pollution is one of the major environmental risks to human health; it can cause strokes, heart disease, lung cancer, and both chronic and acute respiratory diseases. Additionally, the contribution of such pollution to climate change is of significant scientific interest.

Monitoring air quality is of increasing concern, and thankfully more and more companies are taking responsibility for their input and looking for ways to measure and mitigate their environmental contribution.

What is MARGA?

MARGA (Monitor for AeRosols and Gases in ambient Air) was developed in the 1990s by Metrohm Process Analytics in cooperation with the Energy Research Centre of the Netherlands (ECN) (Figure 1).

Figure 1. The original MARGA 1S air monitoring system, developed in the 1990s by Metrohm Process Analytics.

This instrument application offered a new approach in which gases and aerosols sampled from the same air mass are separated from each other by selectively dissolving them in water. The resulting solutions (available every hour) are then analyzed using ion chromatography with conductivity detection. Separating the two fractions from each other allows for the detection of important precursor gases and ionic species found in the aerosols.

Collection of water-soluble ions and analysis by ion chromatography:
  • Gases: HCl, HNO3, HNO2, SO2, NH3
  • Aerosols: Cl, NO3, SO42-, NH4+, Na+, K+, Ca2+, Mg2+, *F

*also possible with the 2060 MARGA (Figure 2)

This new analyzer application was a huge success at that time. However, in the meantime Metrohm Process Analytics was busy implementing more modular flexibility to their process analyzers. That’s why in 2018, based on the all-new 2060 online analysis platform from Metrohm Process Analytics, the 2060 MARGA (Figure 2) was introduced.

To learn more about how MARGA is used in real life situations, download our free technical notes on the Metrohm website.

Figure 2. The Metrohm Process Analytics solution to unattended, automated air quality analysis: the 2060 MARGA M.

Featuring state of the art 2060 software to automate analysis 24/7, brand new hardware adaptable for modular flexibility, and the dependable and well-known MagIC Net software, the 2060 MARGA is the right solution to gain insight of the effects of particulate matter on health and the environment. This instrument is available in two versions:

2060 MARGA M (Monitoring)

The 2060 MARGA M (Figure 2) is ideal for unattended routine monitoring at a permanent site.

Everything is packed into a single instrument, with separate subcabinets for the sample collection wet part, ion analysis cabinet (with two IC channels and column oven for anion and cation determinations), plus reagent containers with level sensors.

2060 MARGA R (Research)

A flexible version, ideal for research applications, features the 2060 user interface and sample collection wet part.

Sample analysis is carried out on a stand-alone Metrohm 940 Professional IC Vario TWO/SeS/PP, including sequential suppression for the anion analysis channel. Installed on-site for a limited time campaign, the 2060 MARGA R works unattended in the same way as the 2060 MARGA M. When not required for field use, the 940 Ion Chromatograph can be put to work in the laboratory, using an external PC and MagIC Net, to run any of the multitude of applications available from Metrohm.

Figure 3. The 2060 MARGA offers hourly data and easy to read trend charts for a full overview of gas and aerosol analysis.

The 2060 MARGA is designed for monitoring in remote locations but it’s never far from home. By using a direct internet connection, the 2060 MARGA performance can be checked remotely, adjustments can be made, and results can be evaluated at any time.

Monitoring air quality around the world

MARGA systems from Metrohm have been used by many official agencies and research organizations globally to monitor air quality in a completely autonomous way.

Figure 4. World map showing the locations of installed MARGA instruments from Metrohm Process Analytics.
Scotland

The MARGA participated in a program focusing on measurement and evaluation of the long-range, transboundary transmission of air-polluting substances in Europe (European Monitoring and Evaluation Programme, «EMEP»). 

This research was performed in Auchencorth Moss, approximately 20 kilometers south of Edinburgh in Scotland, with the objective of analyzing to what degree crops and natural ecosystems, as well as the rural population, are exposed to airborne pollutants.

Learn more about this application here.

Netherlands

Fireworks are full of water-soluble ions and trace metals. The different colors are produced through the combustion of these chemical compounds. After combustion, the air is full of toxic gases and particles which can linger for a significant time, depending on weather patterns.

The 2060 MARGA can determine detailed gas and aerosol concentrations on an hourly basis completely autonomously, offering valuable scientific information about the effect of fireworks on local air quality (Figure 5).

Figure 5. Air pollution due to New Year’s Eve fireworks celebrations in the Netherlands: aerosol concentrations of selected compounds.

For more information about this application, download our free technical note here.

If you would like to read more scientific literature featuring the MARGA, please download our free overview: Air monitoring with ion chromatography: An overview of the literature references.

Download our free monograph:

Practical Ion Chromatography – An Introduction

Post written by Andrea Ferreira (Technical Writer at Metrohm Applikon, Schiedam, The Netherlands) and Dr. Alyson Lanciki (Scientific Editor at Metrohm International Headquarters).