Select Page
«Analyze This»: 2020 in review

«Analyze This»: 2020 in review

I wanted to end 2020 by thanking all of you for making «Analyze This» – the Metrohm blog for chemists such a success! For our 60th blog post, I’d like to look back and focus on the wealth of interesting topics we have published this year. There is truly something for everyone: it doesn’t matter whether your lab focuses on titration or spectroscopic techniques, or analyzes water samples or illicit substances – we’ve got you covered! If you’re looking to answer your most burning chemical analysis questions, we have FAQs and other series full of advice from the experts. Or if you’re just in the mood to learn something new in a few minutes, there are several posts about the chemical world to discover.

We love to hear back from you as well. Leaving comments on your favorite blog posts or contacting us through social media are great ways to voice your opinion—we at Metrohm are here for you!

Finally, I wish you and your families a safe, restful holiday season. «Analyze This» will return on January 11, 2021, so subscribe if you haven’t already done so, and bookmark this page for an overview of all of our articles grouped by topic!

Stay healthy, and stay curious.

Best wishes,

Dr. Alyson Lanciki, Scientific Editor, Metrohm AG

Quickly jump directly to any section by clicking a topic:

Customer Stories

We are curious by nature, and enjoy hearing about the variety of projects where our products are being used! For some examples of interesting situations where Metrohm analytical equipment is utilized, read on.

From underwater archaeological research to orbiting Earth on the International Space Station, Metrohm is there! We assist on all types of projects, like brewing top quality beers and even growing antibiotic-free shrimp – right here in Switzerland.

Interested in being featured? Contact your local Metrohm dealer for details!

Titration

Metrohm is the global market leader in analytical instruments for titration. Who else is better then to advise you in this area? Our experts are eager to share their knowledge with you, and show this with the abundance of topics they have contributed this year to our blog.

For more in-depth information about obtaining the most accurate pH measurements, take a look at our FAQ about pH calibration or read about avoiding the most common mistakes in pH measurement. You may pick up a few tips!

Choose the best electrode for your needs and keep it in top condition with our best practices, and then learn how to standardize titrant properly. Better understand what to consider during back-titration, check out thermometric titration and its advantages and applications, or read about the most common challenges and how to overcome them when carrying out complexometric titrations

If you are interested in improving your conductivity measurements, measuring dissolved oxygen, or the determination of oxidation in edible fats and oils, check out these blog posts and download our free Application Notes and White Papers!

Finally, this article about comprehensive water analysis with a combination of titration and ion chromatography explains the many benefits for laboratories with large sample loads. The history behind the TitrIC analysis system used for these studies can be found in a separate blog post.

Karl Fischer Titration

Metrohm and Karl Fischer titration: a long history of success. Looking back on more than half a century of experience in KFT, Metrohm has shaped what coulometric and volumetric water analysis are today.

Aside from the other titration blog posts, our experts have also written a 2-part series including 20 of the most frequently asked questions for KFT arranged into three categories: instrument preparation and handling, titration troubleshooting, and the oven technique. Our article about how to properly standardize Karl Fischer titrant will take you step by step through the process to obtain correct results.

For more specific questions, read about the oven method for sample preparation, or which is the best technique to choose when measuring moisture in certain situations: Karl Fischer titration, near-infrared spectroscopy, or both?

Ion Chromatography (IC)

Ion chromatography has been a part of the Metrohm portfolio since the late 1980s. From routine IC analysis to research and development, and from stand-alone analyzers to fully automated systems, Metrohm has provided IC solutions for all situations. If you’re curious about the backstory of R&D, check out the ongoing series about the history of IC at Metrohm.

Metrohm IC user sitting at a laboratory bench.

Common questions for users are answered in blog posts about IC column tips and tricks and Metrohm inline ultrafiltration. Clear calculations showing how to increase productivity and profitability in environmental analysis with IC perfectly complement our article about comprehensive water analysis using IC and titration together for faster sample throughput.

On the topic of foods and beverages, you can find out how to determine total sulfite faster and easier than ever, measure herbicides in drinking water, or even learn how Metrohm IC is used in Switzerland to grow shrimp!

Near-Infrared Spectroscopy (NIRS)

Metrohm NIRS analyzers for the lab and for process analysis enable you to perform routine analysis quickly and with confidence – without requiring sample preparation or additional reagents and yielding results in less than a minute. Combining visible (Vis) and near-infrared (NIR) spectroscopy, these analyzers are capable of performing qualitative analysis of various materials and quantitative analysis of a number of physical and chemical parameters in one run.

Our experts have written all about the benefits of NIR spectroscopy in a 4-part series, which includes an explanation of the advantages of NIRS over conventional wet chemical analysis methods, differences between NIR and IR spectroscopy, how to implement NIRS in your laboratory workflow, and examples of how pre-calibrations make implementation even quicker.

A comparison between NIRS and the Karl Fischer titration method for moisture analysis is made in a dedicated article.

A 2-part FAQ about NIRS has also been written in a collaboration between our laboratory and process analysis colleagues, covering all kinds of questions related to both worlds.

Raman Spectroscopy

This latest addition to the Metrohm family expands the Metrohm portfolio to include novel, portable instruments for materials identification and verification. We offer both Metrohm Raman as well as B&W Tek products to cover a variety of needs and requirements.

Here you can find out some of the history of Raman spectroscopy including the origin story behind Mira, the handheld Raman instrument from Metrohm Raman. For a real-world situation involving methamphetamine identification by law enforcement and first responders, read about Mira DS in action – detecting drugs safely in the field.

Mira - handheld Raman keeping you safe in hazardous situations.

Are you looking for an easier way to detect food fraud? Our article about Misa describes its detection capabilities and provides several free Application Notes for download.

Process Analytics

We cater to both: the laboratory and the production floor. The techniques and methods for laboratory analysis are also available for automated in-process analysis with the Metrohm Process Analytics brand of industrial process analyzers.

Learn about how Metrohm became pioneers in the process world—developing the world’s first online wet chemistry process analyzer, and find out how Metrohm’s modular IC expertise has been used to push the limits in the industrial process optimization.

Additionally, a 2-part FAQ has been written about near-infrared spectroscopy by both laboratory and process analysis experts, which is helpful when starting out or even if you’re an advanced user.

Finally, we offer a 3-part series about the advantages of process analytical technology (PAT) covering the topics of process automation advantages, digital networking of production plants, and error and risk minimization in process analysis.

Voltammetry (VA)

Voltammetry is an electrochemical method for the determination of trace and ultratrace concentrations of heavy metals and other electrochemically active substances. Both benchtop and portable options are available with a variety of electrodes to choose from, allowing analysis in any situation.

A 5-part series about solid-state electrodes covers a range of new sensors suitable for the determination of «heavy metals» using voltammetric methods. This series offers information and example applications for the Bi drop electrode, scTrace Gold electrode (as well as a modified version), screen-printed electrodes, and the glassy carbon rotating disc electrode.

Come underwater with Metrohm and Hublot in our blog post as they try to find the missing pieces of the ancient Antikythera Mechanism in Greece with voltammetry.

If you’d like to learn about the combination of voltammetry with ion chromatography and the expanded application capabilities, take a look at our article about combined analysis techniques.

Electrochemistry (EC)

Electrochemistry plays an important role in groundbreaking technologies such as battery research, fuel cells, and photovoltaics. Metrohm’s electrochemistry portfolio covers everything from potentiostats/galvanostats to accessories and software.

Our two subsidiaries specializing in electrochemistry, Metrohm Autolab (Utrecht, Netherlands) and Metrohm DropSens (Asturias, Spain) develop and produce a comprehensive portfolio of electrochemistry equipment.

This year, the COVID-19 pandemic has been at the top of the news, and with it came the discussion of testing – how reliable or accurate was the data? In our blog post about virus detection with screen-printed electrodes, we explain the differences between different testing methods and their drawbacks, the many benefits of electrochemical testing methods, and provide a free informative White Paper for interested laboratories involved in this research.

Our electrochemistry instruments have also gone to the International Space Station as part of a research project to more efficiently recycle water on board spacecraft for long-term missions.

The History of…

Stories inspire people, illuminating the origins of theories, concepts, and technologies that we may have become to take for granted. Metrohm aims to inspire chemists—young and old—to be the best and never stop learning. Here, you can find our blog posts that tell the stories behind the scenes, including the Metrohm founder Bertold Suhner.

Bertold Suhner, founder of Metrohm.

For more history behind the research and development behind Metrohm products, take a look at our series about the history of IC at Metrohm, or read about how Mira became mobile. If you are more interested in process analysis, then check out the story about the world’s first process analyzer, built by Metrohm Process Analytics.

Need something lighter? Then the 4-part history of chemistry series may be just what you’re looking for.

Specialty Topics

Some articles do not fit neatly into the same groups as the rest, but are nonetheless filled with informative content! Here you can find an overview of Metrohm’s free webinars, grouped by measurement technique.

If you work in a regulated industry such as pharmaceutical manufacturing or food and beverage production, don’t miss our introduction to Analytical Instrument Qualification and what it can mean for consumer safety!

Industry-focused

Finally, if you are more interested in reading articles related to the industry you work in, here are some compilations of our blog posts in various areas including pharmaceutical, illicit substances, food and beverages, and of course water analysis. More applications and information can be found on our website.

Food and beverages
All of these products can be measured for total sulfite content.

Oxidation stability is an estimate of how quickly a fat or oil will become rancid. It is a standard parameter of quality control in the production of oils and fats in the food industry or for the incoming goods inspection in processing facilities. To learn more about how to determine if your edible oils are rancid, read our blog post.

Determining total sulfite in foods and beverages has never been faster or easier than with our IC method. Read on about how to perform this notoriously frustrating analysis and get more details in our free LC/GC The Column article available for download within.

Measuring the true sodium content in foodstuff directly and inexpensively is possible using thermometric titration, which is discussed in more detail here. To find out the best way to determine moisture content in foods, our experts have written a blog post about the differences between Karl Fischer titration and near-infrared spectroscopy methods.

To determine if foods, beverages, spices, and more are adulterated, you no longer have to wait for the lab. With Misa, it is possible to measure a variety of illicit substances in complex matrices within minutes, even on the go.

All of these products can be measured for total sulfite content.

Making high quality products is a subject we are passionate about. This article discusses improving beer brewing practices and focuses on the tailor-made system built for Feldschlösschen, Switzerland’s largest brewer.

Pharmaceutical / healthcare

Like the food sector, pharmaceutical manufacturing is a very tightly regulated industry. Consumer health is on the line if quality drops.

Ensuring that the analytical instruments used in the production processes are professionally qualified is a must, especially when auditors come knocking. Find out more about this step in our blog post about Analytical Instrument Qualification (AIQ).

Moisture content in the excipients, active ingredients, and in the final product is imperative to measure. This can be accomplished with different analytical methods, which we compare and contrast for you here.

The topic of virus detection has been on the minds of everyone this year. In this blog post, we discuss virus detection based on screen-printed electrodes, which are a more cost-effective and customizable option compared to other conventional techniques.

Water analysis

Water is our business. From trace analysis up to high concentration determinations, Metrohm has you covered with a variety of analytical measurement techniques and methods developed by the experts.

Learn how to increase productivity and profitability in environmental analysis laboratories with IC with a real life example and cost calculations, or read about how one of our customers in Switzerland uses automated Metrohm IC to monitor the water quality in shrimp breeding pools.

If heavy metal analysis is what you are interested in, then you may find our 5-part series about trace analysis with solid-state electrodes very handy.

Unwanted substances may find their way into our water supply through agricultural practices. Find out an easier way to determine herbicides in drinking water here!

Water is arguably one of the most important ingredients in the brewing process. Determination of major anions and cations along with other parameters such as alkalinity are described in our blog post celebrating International Beer Day.

All of these products can be measured for total sulfite content.
Illicit / harmful substances

When you are unsure if your expensive spices are real or just a colored powder, if your dairy products have been adulterated with melamine, or fruits and vegetables were sprayed with illegal pesticides, it’s time to test for food fraud. Read our blog post about simple, fast determination of illicit substances in foods and beverages for more information.

Detection of drugs, explosives, and other illegal substances can be performed safely by law enforcement officers and first responders without the need for a lab or chemicals with Mira DS. Here you can read about a real life training to identify a methamphetamine laboratory.

Drinking water regulations are put in place by authorities out of concern for our health. Herbicides are important to measure in our drinking water as they have been found to be carcinogenic in many instances.

Post written by Dr. Alyson Lanciki, Scientific Editor at Metrohm International Headquarters, Herisau, Switzerland.

Frequently asked questions in near-infrared spectroscopy analysis – Part 2

Frequently asked questions in near-infrared spectroscopy analysis – Part 2

Whether you are new to the technique, a seasoned veteran, or merely just curious about near-infrared spectroscopy (NIRS), Metrohm is here to help you to learn all about how to perform the best analysis possible with your instruments.

In this series, we will cover several frequently asked questions regarding both our laboratory NIRS instruments as well as our line of Process Analysis NIRS products.

Did you miss Part 1 in this series? Find it here!

1. What are typical detection limits for liquid samples and for solid samples?

The detection limit varies depending on the substance analyzed, the complexity of the sample matrix, and the sensitivity of both the reference and NIR technology used. NIR spectroscopy systems using dispersive technology are the most sensitive. Using such a system to analyze a simple sample in which the parameter of interest is a strong absorber will allow low detection limits.

For example, water in solvents can be detected down to about 10 mg/L in both offline and online/inline measurements. For more complex matrices (e.g., solids and slurries), detection limits are about 1000 mg/L (0.1%).

For more information about the differences between solid and liquid samples for NIRS analysis, as well as the different methods best suited for such matrices, read our blog post «Benefits of NIR spectroscopy: Part 1» here!

2. What accuracy can I achieve with NIR spectroscopy?

The accuracy of a near-infrared spectroscopic method depends on the accuracy of the reference/primary method. A highly accurate primary method will result in the development of a highly accurate NIR method, while a less accurate primary method lowers the accuracy of the related NIR method. This is because the NIR data and primary data are correlated in the prediction model. A good prediction model will have approximately 1.1x the accuracy of the primary method over the prediction range.

The development of prediction models has been described in detail in our previous blog article: «Benefits of NIR spectroscopy: Part 3».

3. How are instruments calibrated and how often do I need to recalibrate an instrument?

Instruments are calibrated using certified NIST standards. For dispersive systems measuring in reflection mode, NIST SRM 1920 standards are used to calibrate the wavelength / wavenumber axis. Certified reflection standards with a defined reflectance made of ceramic can be used to calibrate the absorbance axis.

In transmission mode, typically NIST SRM 2065 or 2035 are used for the wavelength / wavenumber calibration, and air for the absorbance axis.

A calibration should be performed after each hardware modification (e.g., lamp exchange) and annually as part of a service interval. Ideally, the spectroscopy software guides user through the complete calibration processes.

Find the calibration tools for your Metrohm NIRS instruments here!

Metrohm NIRS reflection standard, set of 2.

4. How do I validate my instrument and how frequently should validation be done?

The Metrohm NIRS DS2500 Solid Analyzer.

NIR spectroscopy software offers different tests to validate the performance of the instrument. The most common one is a basic performance test, which tests some crucial hardware parts as well as the wavelength/wavenumber calibration and the signal to noise (S/N) of the system.

For the regulated environment, further tests according to the USP <856> guidelines are typically implemented, including photometric linearity and noise at high and low light fluxes. Instrument performance tests should be performed on a regular basis, with the frequency depending on risk assessment.

5. What sample types or parameters are not suitable for analysis with NIR spectroscopy?

Samples containing a high amount of carbon black cannot be analyzed by NIR spectroscopy because carbon black absorbs almost all NIR light.

Further, most inorganic substances have no absorbance bands in the NIR spectral region and are therefore not suitable for NIR analysis.

Find out more about the molecules and functional groups which are active in the NIR region of the electromagnetic spectrum in our previous blog post: «Benefits of NIR spectroscopy: Part 2».

Carbon black is not a suitable sample to be measured by NIR technology.

Are you looking for more spectroscopy applications? Check out the Metrohm Application Finder to download free applications across a variety of industries!

6. My industrial process is full of harsh chemicals, so manual sampling is not desirable. Is it possible to perform inline NIR analysis in hazardous areas?

Yes, and we have the right solutions for you. Metrohm not only manufactures instruments for laboratory analysis, but we also cater to the industrial process world! Metrohm Process Analytics offers two versions of process NIRS systems: the NIRS Analyzer Pro and the NIRS XDS Process Analyzer, the latter being the ideal solution for hazardous environments.

Metrohm Process Analytics offers two lines of near-infrared spectroscopic process analyzers: the NIRS Analyzer PRO and the NIRS XDS Process Analyzer.

NIRS is a robust and extremely versatile method, which enables simultaneous, «real-time» monitoring of diverse process parameters with a single measurement. The use of fiber-optics in NIRS means that the process analyzer and measuring point can be spatially separated – even by hundreds of meters if required. In fact, remote monitoring can be achieved at large distances without significant impact to S/N ratios. This is a huge advantage in environments with challenging explosion protection requirements. Fiber-optic probes and flow cells can be placed in very harmful working environments, while the spectrometer and analysis PC remain safe and secure in a shelter. When a shelter is not available, the NIRS XDS Process Analyzer can be directly placed in the hazardous area (ATEX Zone 2 or Class1Div2).

Obtain «real-time» results of your process without the need to take samples, reduce the risks of handling chemicals, and increase your profitability. Download our free brochure here for more information about safe operation of NIRS process analyzers in hazardous areas!

7. How is the maintenance of a NIRS process analyzer performed?

Maintenance is easy, fast, and not necessary to perform very often. NIRS is a reagentless analytical technique, so the only consumable to be replaced is the lamp, which needs replacement once per year.

Compared to other techniques like chromatography  (e.g., GC, IC) or titration, and also because NIR spectroscopic analysis does not degrade samples, there is no chemical waste which is produced. Additionally, thanks to our all-in-one software, automatic performance tests are performed regularly to guarantee that the analyzer is operating according to process specifications. The instrument can be left in the process without any further operator involvement. 

Metrohm Process Analytics NIRS process analyzers are maintenance-free systems that have been designed to guarantee high uptimes and low operational costs.

Are you searching for more process NIRS applications? Check out the Metrohm Application Finder to download them for free!

Want to learn more about NIR spectroscopy and potential applications? Have a look at our free and comprehensive application booklet about NIR spectroscopy.

Download our Monograph

A guide to near-infrared spectroscopic analysis of industrial manufacturing processes

Post written by Dr. Nicolas Rühl (Product Manager Spectroscopy at Metrohm International Headquarters, Herisau, Switzerland) and Dr. Alexandre Olive (Product Manager Process Spectroscopy at Metrohm Applikon, Schiedam, The Netherlands).

Frequently asked questions in near-infrared spectroscopy analysis – Part 1

Frequently asked questions in near-infrared spectroscopy analysis – Part 1

Whether you are new to the technique, a seasoned veteran, or merely just curious about near-infrared spectroscopy (NIRS), Metrohm is here to help you to learn all about how to perform the best analysis possible with your instruments.

In this series, we will cover several frequently asked questions regarding both our laboratory NIRS instruments as well as our line of Process Analysis NIRS products.

1. What is the difference between IR spectroscopy and NIR spectroscopy?

IR (infrared) and NIR (near-infrared) spectroscopy utilize different spectral ranges of light. Light in the NIR range is higher in energy than IR light (Figure 1), which affects the interaction with the molecules in a sample.

Electromagnetic Spectrum
Figure 1. The electromagnetic spectrum.

This energy difference has both advantages and disadvantages, and the selection of the ideal technology depends very much on the application. The higher energy NIR light is absorbed less than IR light by most organic materials, broadening the resulting bands and making it difficult to assign them to specific functional groups without mathematical processing.

However, this same feature makes it possible to perform analysis without sample preparation, as there is no need to prepare very thin layers of analyte or use ATR (attenuated total reflection). Additionally, NIRS can quantify the water content in samples up to 15%.

Want to learn more about how to perform faster quality control at lower operating costs by using NIRS in your lab? Download our free white paper here: Boost Efficiency in the QC laboratory: How NIRS helps reduce costs up to 90%.

The weaker absorption of NIR light leads to using long pathlengths for liquid measurements, which is particularly helpful in industrial process environments. Speaking of such process applications, with NIR spectroscopy, you can use long fiber optic cables to connect the analyzer to the measuring probe, allowing remote measurements throughout the process due to low absorbance of the NIR light by the fiber (Figure 2).

Electromagnetic Spectrum
Figure 2. Illustration of the long-distance measurement possibility of a NIRS process analyzer with the use of low-dispersion fiber optic cables. Many sampling options are available for completely automated analysis, allowing users to gather real-time data for immediate process adjustments.

For more information, read our previous blog post outlining the differences between infrared and near-infrared spectroscopy.

2. NIR spectroscopy is a «secondary technology». What does this mean?

To create prediction models in NIR spectroscopy, the NIR spectra are correlated with parameters of interest, e.g., the water content in a sample. These models are then used during routine quality control to analyze samples.

Values from a reference (primary) method need to be correlated with the NIR spectrum to create prediction models (Figure 3). Since NIR spectroscopy results depend on the availability of such reference values during prediction model development, NIR spectroscopy is therefore considered a secondary technology.

Electromagnetic Spectrum
Figure 3. Correlation plot of moisture content in samples measured by NIRS compared to the same samples measured with a primary laboratory method.

For more information about how Karl Fischer titration and NIR spectroscopy work in perfect synergy, download our brochure: Water Content Analysis – Karl Fischer titration and Near-Infrared Spectroscopy in perfect synergy.

Read our previous blog posts to learn more about NIRS as a secondary technique.

3. What is a prediction model, and how often do I need to create/update it?

In NIR spectroscopy, prediction models interpret a sample’s NIR spectrum to determine the values of key quality parameters such as water content, density, or total acid number, just to name a few. Prediction models are created by combining sample NIR spectra with reference values from reference methods, such as Karl Fischer titration for water content (Figure 3).

A prediction model, which consists of sufficient representative spectra and reference values, is typically created once and will only need an update if samples begin to vary (for example after a change of production process equipment or parameter, raw material supplier, etc.).

Want to know more about prediction models for NIRS? Read our blog post about the creation and validation of prediction models here.

4. How many samples are required to develop a prediction model?

The number of samples needed for a good prediction model depends on the complexity of the sample matrix and the molecular absorptivity of the key parameter.

For an «easy» matrix, e.g., a halogenated solvent with its water concentration as the measurement parameter, a sample set of 1020 spectra covering the complete concentration range of interest may be sufficient. For applications that are more complex, we recommend using at least 40–60 spectra in order  to build a reliable prediction model.

Find out more about NIRS pre-calibrations built on prediction models and how they can save time and effort in the lab.

5. Which norms describe the use of NIR in regulated and non-regulated industries?

Norms describing how to implement a near-infrared spectroscopy system in a validated environment include USP <856> and USP <1856>. A general norm for non-regulated environments regarding how to create prediction models and basic requirements for near-infrared spectroscopy systems are described in ASTM E1655. Method validation and instrument validation are guided by ASTM D6122 and ASTM D6299, respectively.

Figure 4. Different steps for the successful development of quantitative methods according to international standards.

For specific measurements, e.g. RON and MON analysis in fuels, standards such as ASTM D2699 and ASTM D2700 should be followed.

For further information, download our free Application Note: Quality Control of Gasoline – Rapid determination of RON, MON, AKI, aromatic content, and density with NIRS.

6. How can NIRS be implemented in a production process?

Chemical analysis in process streams is not always a simple task. The chemical and physical properties such as viscosity and flammability of the sample streams can interfere in the analysis measurements. Some industrial processes are quite delicate—even the slightest changes to the process parameters can lead to significant variability in the properties of final products. Therefore, it is essential to measure the properties of the stream continuously and adjust the processing parameters via rapid feedback to assure a consistent and high quality product.

Figure 5. Example of the integration of inline NIRS analysis in a fluid bed dryer of a production plant.

Curious about this type of application? Download it for free from the Metrohm website!

The use of fiber optic probes in NIRS systems has opened up new perspectives for process monitoring. A suitable NIR probe connected to the spectrometer via optical fiber allows direct online and inline monitoring without interference in the process. Currently, a wide variety of NIR optical probes are available, from transmission pair probes and immersion probes to reflectance and transflectance probes, suitable for contact and non-contact measurements. This diversity allows NIR spectroscopy to be applied to almost any kind of sample composition, including melts, solutions, emulsions, and solid powders.

Selecting the right probe, or sample interface, to use with a NIR process analyzer is crucial to successful process implementation for inline or online process monitoring. Depending upon whether the sample is in a liquid, solid or gaseous state, transflectance or transmission probes are used to measure the sample, and specific fitting attachments are used to connect the probes to the reactor, tank, or pipe. With more than 45 years of experience, Metrohm Process Analytics can design the best solutions for your process. 

Visit our website to find a selection of free Application Notes to download related to NIRS measurements in industrial processes.

7. How can product quality be optimized with process NIRS?

Regular control of key process parameters is essential to comply with certain product and process specifications, and results in attaining optimal product quality and consistency in any industry. NIRS analyzers can provide data every 30 seconds for near real-time monitoring of production processes.

Figure 6. The Metrohm Process Analytics NIRS XDS Process Analyzer, shown here with multiplexer option allowing up to 9 measuring channels. Here, both microbundle (yellow) and single fiber (blue) optical cables are connected, with both a reflectance probe and transmission pair configured.

Using NIRS process analyzers is not only preferable for 24/7 monitoring of the manufacturing process, it is also extremely beneficial for inspecting the quality of raw materials and reagents. By providing data in «real-time» to the industrial control system (e.g., DCS or PLC), any process can be automated based on the NIRS data. As a result, downtimes are reduced, unforeseen situations are avoided, and costly company assets are safeguarded.

Furthermore, the included software on Metrohm Process Analytics NIRS instruments has a built-in chemometric package which allows qualification of a product even while it is still being produced. A report is then generated which can be directly used by the QC manager. Therefore, the product quality consistency is improved leading to potential added revenues.

Do you want to learn more about improving product quality with online or inline NIRS analysis? Take a look at our brochure!

In the next part, we cover even more of your burning questions regarding NIRS for lab and process measurements:

Want to learn more about NIR spectroscopy and potential applications? Have a look at our free and comprehensive application booklet about NIR spectroscopy.

Download our Monograph

A guide to near-infrared spectroscopic analysis of industrial manufacturing processes

Post written by Dr. Nicolas Rühl (Product Manager Spectroscopy at Metrohm International Headquarters, Herisau, Switzerland) and Dr. Alexandre Olive (Product Manager Process Spectroscopy at Metrohm Applikon, Schiedam, The Netherlands).

Forewarned is Forearmed: Error and risk minimization in process analysis – Part 3

Forewarned is Forearmed: Error and risk minimization in process analysis – Part 3

In the course of life, each of us learns to trust our gut feelings or our experiences to avoid situations that seem dangerous or risky. You quite literally sense potential dangers with an uneasy feeling. Who hasn’t painfully learned that touching a hot stove top isn’t a good idea? Or who voluntarily goes outside during a tornado?

While humans can rely on their intuition and learned patterns to avoid dangers or use protective strategies, this is far more complicated with electronic systems or machines. All components of a system must be in a permanently safe state. Failures and malfunctions of individual components can have devastating consequences for production processes and the safety of the operators.

An example of this is the Seveso disaster in 1976, in which highly toxic dioxin TCDD escaped as a result of an uncontrolled reaction, and sustainably poisoned flora and fauna. With regard to other major chemical accidents, the European Seveso III Directive then came into force in 2012 to control major accident hazards to prevent major accidents.

Have you read Part 1 and Part 2 of our «Advantages of PAT (Process Analytical Technology)» series? If not, find them here!

Recognize, master, and avoid errors

Process engineering systems that are operated continuously contain countless components that can wear out or fail during their life cycle. However, if the measuring, control, or regulating circuit is affected, failures can cause immense damage. Under no circumstances should humans nor the environment be exposed to any kind of danger. For this reason, the functional safety of the components must be guaranteed, and their risk and hazard potential must be analyzed in detail.

The service life of mechanical components can be evaluated by observing mechanical wear and tear. However, the aging behavior of electronic components is difficult to assess. A unit of measure that makes risk reduction and thus functional safety quantifiable is the so-called «Safety Integrity Level» (SIL). 

The following procedure is followed:

  1.   Risk analysis
  2.   Realization of risk reduction
  3.   Evidence that the realized risk reduction corresponds at least to the required risk reduction

«Process analysis systems are part of the entire safety cycle of a manufacturing plant and therefore only one component whose risk of malfunctions and failures must be considered in an assessment.»

Risk assessmentA process is considered safe if the current risk has been reduced below the level of the tolerable risk. If safety is ensured by technical measures, one speaks of functional safety.

Significance for process analysis systems

Errors can happen anywhere, and can never be completely excluded. To minimize possible errors, it is therefore necessary to estimate the risk of occurrence and the damage to be expected from it as part of a risk analysis. A distinction must be made here between systematic and random errors.

Systematic errors are potentially avoidable and are caused, for example, by software errors or configuration deficiencies. Accordingly, they already exist during or prior to commissioning.

In contrast, random errors are potentially difficult to avoid because they occur arbitrarily. Nevertheless, the error rate or failure probability can be determined statistically and experimentally.

Random errors usually result from the hardware and occur during operation. Ultimately, systematic errors should be avoided, and random errors should be mastered to ensure trouble-free functionality.

Process analysis systems are the link between manual laboratory analysis and the industrial process. In applications where continuous and fully automatic monitoring of critical parameters is required, process analyzers are indispensable. Due to the different analysis conditions in the laboratory and directly in the process, there are some challenges when transferring the measurement technology from the lab to the process. The decisive factors are the working and environmental conditions (e.g., high temperatures, corrosive atmospheres, moisture, dust, or potentially explosive environments) which the process analyzers have to meet regarding their design, construction materials, and reliability of the components. The analyzer automatically and continuously transmits system and diagnostic data to prevent hardware or software components from failing through preventive measures. This significantly reduces the chance of random errors occurring.

General process analyzer setup

a) Analyzer Setup

Process analyzers have been specially developed for use in harsh and aggressive industrial environments. The IP66 protected housing is divided into two parts, and consists of separate wet and electronic parts. The electronics part contains all components relevant to control and operate the process analyzer. Modular components like burettes, valves, pumps, sampling systems, titration vessels, and electrodes can be found in the analyzer wet part. Representative samples can thus be taken from the process measuring point several meters away. The analysis procedure, the methods to be used, and method calculations are freely programmable.

A touchscreen with intuitive menu navigation allows easy operation, so that production processes can be optimized at any time. The course of the measurement is graphically represented and documented over the entire determination, so that the analysis process is completely controlled. The measurement results can be generated 24/7 and allow close and fully automatic monitoring of the process. Limits, alarms, or results are reliably transferred to the process control system.

When operating the analyzer, there is a risk that software errors can lead to failures. In order to recognize this with foresight, the system delivers self-diagnostic procedures as soon as it is powered on and also during operation. This includes, e.g., checking pumps and burettes, checking for leaks, or checking the communication between the I/O controller, the human interface, and the respective analysis module.

b) Sensors

The central component of a process analyzer is the measurement technique in use. In the case of sensors or electrodes, there are several requirements such as chemical resistance, ease of maintenance, robustness, or precision which they must meet. The safety-related risk arises from the possibility if measurement sensors fail due to aging, or if they become damaged and subsequently deliver incorrect measurement results.

Failure of the electrode, contamination, or damage must be reported immediately. With online analysis systems, the analysis is performed in an external measuring cell. In addition, recurring calibration and conditioning routines are predefined and are performed automatically. The status of the electrode is continuously monitored by the system.

Between measurements, the electrode is immersed in a membrane-friendly storage solution that prevents drying out and at the same time regenerates the swelling layer. The electrode is therefore always ready for use and does not have to be removed from the process for maintenance. This enables reliable process control even under harsh industrial conditions.

c) Analysis

Process analyzers must be able to handle samples for analysis over a wide concentration range (from % down to trace levels) without causing carry-over or cross-sensitivity issues. In many cases, different samples from several measuring points are determined in parallel in one system using different analysis techniques. The sample preparation (e.g., filtering, diluting, or wet chemical digestion) must be just as reliable and smooth as the fully automatic transfer of results to the process control system so that a quick response is possible.

Potential dangers for the entire system can be caused by incorrect measurement results. In order to minimize the risk, a detector is used to notify the system of the presence of sample in the vessel. The testing of the initial potential of the analysis or titration curves / color development in photometric measurements are diagnostic data that are continuously recorded and interpreted. Results can be verified by reference analysis or their plausibility can be clarified using standard and check solutions.

Detect errors before they arise

The risk assessment procedures that are carried out in the context of a SIL classification for process engineering plants are ultimately based on mathematical calculations. However, in the 24/7 operation of a plant, random errors can never be completely excluded. Residual risk always remains. Therefore, the importance of preventive maintenance activities is growing immensely in order to avoid hardware and software failures during operation.

A regular check of the process analyzer and its diagnostic data is the basic requirement for permanent, trouble-free operation. With tailor-made maintenance and service concepts, the analyzer is supported by certified service engineers over the entire life cycle. Regular maintenance plans, application support, calibration, or performance certificates, repairs, and original spare parts as well as proper commissioning are just a few examples.

Advantages of preventive maintenance from Metrohm Process Analytics

  • Preservation of your investment
  • Minimized risk of failure
  • Reliable measurement results
  • Calculable costs
  • Original spare parts
  • Fast repair
  • Remote Support

In addition, transparent communication between the process control system and the analyzer is also relevant in the context of digitalization. The collection of performance data from the analyzer to assess the state of the control system is only one component. The continuous monitoring of relevant system components enables conclusions to be drawn about any necessary maintenance work, which ideally should be carried out at regular intervals. The question arises as to how the collected data is interpreted and how quickly it is necessary to intervene. Software care packages help to test the software according to the manufacturer’s specifications, to perform data backup and software maintenance.

«Remote support is particularly important in times when you cannot always be on site.»

In real emergency situations in which rapid error analysis is required, manufacturers can easily support the operator remotely using remote maintenance solutions. The system availability is increased, expensive failures and downtimes are avoided, and the optimal performance of the analyzer is ensured.

Read what our customers have to say!

We have supported customers even in the most unlikely of places⁠—from the production floor to the desert and even on active ships!

Post written by Dr. Kerstin Dreblow, Product Manager Wet Chemical Process Analyzers, Deutsche Metrohm Prozessanalytik (Germany).

Making a better beer with chemistry

Making a better beer with chemistry

Lager or ale? Pale ale or stout? Specialty beer, or basic draft? This week, to celebrate the International Beer Day on Friday, August 7th, I have chosen to write about a subject near and dear to me: how to make a better beer! Like many others, at the beginning of my adult life, I enjoyed the beverage without giving much thought to the vast array of styles and how they differed, beyond the obvious visual and gustatory senses. However, as a chemist with many chemist friends, I was introduced at several points to the world of homebrewing. Eventually, I succumbed.

Back in 2014, my husband and I bought all of the accessories to brew 25 liters (~6.5 gallons) of our own beer at a time. The entire process is controlled by us, from designing a recipe and milling the grains to sanitizing and bottling the finished product. We enjoy being able to develop the exact bitterness, sweetness, mouthfeel, and alcohol content for each batch we brew.

Over the years we have become more serious about this hobby by optimizing the procedure and making various improvements to the setup – including building our own temperature-controlled fermentation fridge managed by software. However, without an automated system, we occasionally run into issues with reproducibility between batches when using the same recipe. This is an issue that every brewer can relate to, no matter the size of their operation.

Working for Metrohm since 2013 has allowed me to have access to different analytical instrumentation in order to check certain quality attributes (e.g., strike water composition, mash pH, bitterness). However, Metrohm can provide much more to those working in the brewing industry. Keep reading to discover how we have improved analysis at the largest brewery in Switzerland.

Are you looking for applications in alcoholic beverages? Check out this selection of FREE Application Notes from Metrohm:

Lagers vs. Ales

There are two primary classes of beer: lagers and ales. The major contrast between the two is the type of yeast used for the fermentation process. Lagers must be fermented at colder temperatures, which lends crisp flavors and low ester formation. However, colder processes take longer, and so fermentation steps can last for some months. Ales have a much more sweet and fruity palate of flavors and are much easier to create than lagers, as the fermentation takes place at warmer temperatures and happens at a much faster rate.

Comparison between the fermentation of lagers and ales.

Diving a bit deeper, there are several styles of beer, from light pilsners and pale ales to porters and black imperial stouts. The variety of colors and flavors depend mostly on the grains used during the mash, which is the initial process of soaking the milled grains at a specific temperature (or range) to modify the starches and sugars for the yeast to be able to digest. The strain of yeast also contributes to the final flavor, whether it is dry, fruity, or even sour. Taking good care of the yeast is one of the most important parts of creating a great tasting beer.

Brewing terminology

  • Malting: process of germinating and kilning barley to produce usable sugars in the grain
  • Milling: act of grinding the grains to increase surface area and optimize extraction of sugars
  • Mashing: releasing malt sugars by soaking the milled grains in (hot) water, providing wort
  • Wort: the solution of extracted grain sugars
  • Lautering: process of clarifying wort after mashing
  • Sparging: rinsing the used grains to extract the last amount of malt sugars
  • Boiling: clarified wort is boiled, accomplishing sterilization (hops are added in this step)
  • Cooling: wort must be cooled well below body temperature (37 °C) as quickly as possible to avoid infection
  • Pitching: prepared yeast (dry or slurry) is added to the cooled brewed wort, oxygen is introduced
  • Fermenting: the process whereby yeast consumes simple sugars and excretes ethanol and CO2 as major products

Ingredients for a proper beer

These days, beer can contain several different ingredients and still adhere to a style. Barley, oats, wheat, rye, fruit, honey, spices, hops, yeast, water, and more are all components of our contemporary beer culture. However, in Bavaria during the 1500’s, the rules were much more strict. A purity law known as the Reinheitsgebot (1516) stated that beer must only be produced with water, barley, and hops. Any other adjuncts were not allowed, which meant that other grains such as rye and wheat were forbidden to be used in the brewing process. We all know how seriously the Germans take their beer – you only need to visit the Oktoberfest once to understand!

Determination of the bitterness compounds in hops, known as «alpha acids», can be easily determined with Metrohm instrumentation. Check out our brochure for more information:

You may have noticed that yeast was not one of the few ingredients mentioned in the purity law, however it was still essential for the brewing process. The yeast was just harvested at the end of each batch and added into the next, and its propagation from the fermentation process always ensured there was enough at the end each time. Ensuring the health of the yeast is integral to fermentation and the quality of the final product. With proper nutrients, oxygen levels, stable temperatures, and a supply of simple digestible sugars, alcohol contents up to 25% (and even beyond) can be achieved with some yeast strains without distillation (through heating or freezing, as for eisbocks).

Improved quality with analytical testing

Good beers do not make themselves. For larger brewing operations, which rely on consistency in quality and flavor between large batch volumes as well as across different countries, comprehensive analytical testing is the key to success.

Metrohm is well-equipped for this task, offering many solutions for breweries large and small.

Don’t take it from me – listen to one of our customers, Jules Wyss, manager of the Quality Assurance laboratory at Feldschlösschen brewery, the largest brewery in Switzerland.

«I have decided to go with Metrohm, because they are the only ones who are up to such a job at all. They share with us their huge know-how.

I can’t think of any other supplier who would have been able to help me in the same way

Jules Wyss

Manager Quality Assurance Laboratory, Feldschlösschen Getränke AG

Previous solutions failed

For a long time, Jules determined the quality parameters in his beer samples using separate analysis systems: a titrator, HPLC system, alcohol measuring device, and a density meter. These separate measurements involved a huge amount of work: not only the analyses themselves, but also the documentation and archiving of the results all had to be handled separately. Furthermore, Jules often had to contend with unreliable results – depending on the measurement procedure, he had to analyze one sample up to three times in order to obtain an accurate result.

A tailor-made system for Feldschlösschen

Jules’ close collaboration with Metrohm has produced a system that takes care of the majority of the necessary measurements. According to Jules, the system can determine around 90% of the parameters he needs to measure. Jules’ new analysis system combines various analysis techniques: ion chromatography and titration from Metrohm as well as alcohol, density, and color measurement from another manufacturer. They are all controlled by the tiamo titration software. This means that bitterness, citric acid, pH value, alcohol content, density, and color can all be determined by executing a single method in tiamo.

Measurement of the overall water quality as well as downstream analysis of the sanitization process on the bottling line is also possible with Metrohm’s line of Process Analysis instrumentation.

Integrated analytical systems with automated capabilities allow for a «plug and play» determination of a variety of quality parameters for QA/QC analysts in the brewing industry. Sample analysis is streamlined and simplified, and throughput is increased via the automation of time-consuming preparative and data collection steps, which also reduces the chance of human error.

Something to celebrate: The Metrohm 6-pack (2018)

In 2018, Metrohm celebrated its 75 year Jubilee. At this time, I decided to combine my experience as a laboratory analyst as well as a marketing manager to brew a series of six different styles of beer for the company, as a giveaway for customers of our Metrohm Process Analytics brand, for whom I worked at the time. Each batch was brewed to contain precisely 7.5% ABV (alcohol by volume), to resonate with the 75 year anniversary. The array of ales was designed to appeal to a broad audience, featuring a stout, porter, brown ale, red ale, hefeweizen, and an India pale ale (IPA). Each style requires different actions especially during the mashing process, based on the type of grains used and the desired outcome (e.g., flavor balance, mouthfeel, alcohol content).

Bespoke bottle caps featuring the Metrohm logo.
The 6 styles of beers brewed as a special customer giveaway to celebrate the Metrohm 75 year Jubilee.

Using a Metrohm Ion Chromatograph, I analyzed my home tap water for concentrations of major cations and anions to ensure no extra salts were needed to adjust it prior to mashing. After some of the beers were prepared, I tested my colleagues at Metrohm International Headquarters in the IC department, to see if they could determine the difference between two bottles with different ingredients:

Overlaid chromatograms from IC organic acid analysis highlighting the differences between 2 styles of the Metrohm 75 year Jubilee beers.

The IC analysis of organic acids and anions showed a clear difference between the beers, allowing them to determine which sample corresponded to which style, since I did not label them prior to shipping the bottles for analysis. As the milk stout contained added lactose, this peak was very pronounced and a perfect indicator to use.

Metrohm ion chromatography, along with titration, NIRS, and other techniques, allows for reliable, comprehensive beer analysis for all.

In conclusion, I wish you a very happy International Beer Day this Friday. Hopefully this article has illuminated the various ways that beer and other alcoholic beverages can be analytically tested for quality control parameters and more  fast, easy, and reliably with Metrohm instrumentation.

For more information about the beer quality parameters measured at Feldschlösschen brewery, take a look at our article: «In the kingdom of beer The largest brewery in Switzerland gets a made-to-measure system». Cheers!

Read the full article:

«In the kingdom of beer – The largest brewery in Switzerland gets a made-to-measure system»

Post written by Dr. Alyson Lanciki, Scientific Editor (and «chief brewing officer») at Metrohm International Headquarters, Herisau, Switzerland.